Contents

Preface

Notation

1. Introduction Page 1
 1.1 Expectations
 1.2 The problem to be solved
 1.3 Data sets
 1.4 Software

2. Why a statistical approach? Page 7
 2.1 Investigating the sample data
 2.2 Measures of central tendency
 2.3 Measures of spread or variability
 2.4 Graphical descriptions of the data
 2.5 Other useful descriptive statistics
 2.6 Discrete data
 2.7 Into the unknown
 2.8 Worked examples
 2.8.1 Coal project data, calorific values
 2.8.2 Iron ore example
 2.8.3 Wolfcamp data
 2.8.4 Scallops, total catch
 2.9 Exercises

3. Normal (Gaussian) distributions Page 29
 3.1 The gap between data and population
 3.2 Is it a Normal distribution?
 3.3 Estimating population parameters
 3.3.1 estimating the population average
3.3.2 estimating the standard deviation
3.3.3 confidence intervals for standard deviation
3.3.4 confidence intervals for mean

3.4 Selection (grade/tonnage) calculations

3.5 Summary of chapter

3.6 Worked examples
 3.6.1 Coal project, calorific values
 3.6.2 Iron ore example
 3.6.3 Wolfcamp data
 3.6.4 Scallop data, total catch

3.7 Exercises

4. Lognormal distributions (and others) Page 63
 4.1 The lognormal distribution
 4.1.1 estimating the mean of a lognormal population
 4.1.2 confidence intervals on the population mean
 4.2 The three parameter lognormal
 4.3 Selection (grade/tonnage) calculations
 4.3.1 two parameter lognormal — reef widths
 4.3.2 three parameter lognormal — gold grades
 4.4 More complex distributions and mixtures
 4.4.1 mixtures of Normal or lognormal populations
 4.5 Worked examples
 4.5.1 Scallops, total caught
 4.5.2 Organic matter in soil
 4.5.3 Calcium in limestone
 4.5.4 Geevor Tin mine, Cornwall
 4.6 Exercises

5. Discrete distributions Page 99
 5.1 Review of Discrete Moments
 5.2 Bernoulli and Binomial Distributions
 5.3 Negative Binomial and Geometric Distributions
 5.4 Poisson Distribution
 5.5 Mixtures of Poisson Distributions (Compound Poisson)
 5.5.1 Oswego Zircon data
 5.5.2 Other examples
5.6 Spatial Considerations
5.7 Solved Problems
5.8 Exercises

6. Hypothesis testing Page 129

6.1 Single sample tests
 6.1.1 test on sample mean
 6.1.2 test on sample standard deviation

6.2 Two sample tests
 6.2.1 test on standard deviations
 6.2.2 test on means
 6.2.3 paired sampling
 6.2.4 test for sample distribution

6.3 Worked examples
 6.3.1 Heights of students
 6.3.2 Geevor tin mine – development versus stope

6.4 Exercises

7. Relationships Page 141

7.1 Straight line relationships
 7.1.1 quantifying the strength of the relationship
 7.1.2 Predicting one variable from the other
 7.1.3 Calorific Value versus Ash Content
 7.1.4 Calorific Value versus Sulphur Content

7.2 Other worked examples
 7.2.1 Gold grade versus reef width
 7.2.2 Scallops caught
 7.2.3 Application — Krige’s Regression Effect

7.3 Relationships involving more than two variables
 7.3.1 Predicting Sulphur from Calorific Value and Ash Content
 7.3.2 Application — Krige’s moving average template
 7.3.3 Curvilinear Regression
 7.3.4 Application — Polynomial Trend Surface Analysis

7.4 Exercises

8. The spatial element Page 177

8.1 Including location as well as value
8.2 Spatial relationships
8.3 Inverse distance estimation
8.4 Worked examples
 8.4.1 Coal project, calorific values
 8.4.2 Iron ore project
 8.4.3 Wolfcamp data
 8.4.4 Scallops caught
8.5 Exercises

9. The semi-variogram
 9.1 The experimental semi-variogram
 9.1.1 Irregular sampling
 9.1.2 Cautionary notes
 9.2 Modelling of the semi-variogram function
 9.2.1 The linear model
 9.2.2 The generalised linear model
 9.2.3 The Spherical model
 9.2.4 The exponential model
 9.2.5 Gaussian model
 9.2.6 The hole effect model
 9.2.7 Paddington mix model
 9.2.8 Judging how well the model fits the data
 9.2.9 equivalence to covariance function
 9.2.10 the nugget effect
 9.3 Worked examples
 9.3.1 Silver example from Practical Geostatistics 1979
 9.3.2 Coal project: calorific values
 9.3.3 Wolfcamp aquifer
9.4 Exercises
10. **Estimation and Kriging**

10.1 Estimation error
10.1.1 one sample estimation
10.1.2 another single sample
10.1.3 two sample estimation
10.1.4 another two sample estimation
10.1.5 three sample estimator

10.2 Choosing the optimal weights
10.2.1 three sample estimation
10.2.2 the general form for the ‘optimal’ estimator
10.2.3 confidence levels and degrees of freedom
10.2.4 simple kriging

10.3 Ordinary kriging
10.3.1 ‘optimal’ unbiassed estimator
10.3.2 alternate form: matrices
10.3.3 alternate form: covariance
10.3.4 three sample estimation

10.4 Worked examples
10.4.1 Coal project, calorific values
10.4.2 Iron ore example, (Page95)
10.4.3 Wolfcamp, residuals from quadratic surface

10.5 Cross validation
10.5.1 cross cross validation

10.6 Exercises

11. **Areas and volumes**

11.1 The impact on the distribution
11.1.1 Iron ore example, Normal example
11.1.2 Geevor Tin Mine, lognormal(ish) example

11.2 The impact on kriging
11.2.1 the use of auxiliary functions
11.2.2 Iron ore example, Page 95
11.2.3 Wolfcamp aquifer, quadratic residuals
12. **Other kriging approaches** Page 301

12.1 Universal kriging

12.1.1 Wolfcamp aquifer

12.2 Lognormal kriging

12.2.1 the proportional effect

12.2.2 the lognormal transformation

12.2.3 Geevor Tin Mine, grades

12.2.4 SA Gold Mine

12.3 Indicator kriging

12.4 Rank uniform kriging

12.5 Summary of chapter

13. **Bibliography** Page 325

Tables Page 329

Data Sets Page 373

Index Page 409