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INTRODUCTION 
 
The problem of the estimation of ore reserves is essentially a simple one to describe.  Given 
a set of sample data, at specified locations within a deposit, how can we estimate the value 
(or quantity) of ore in unsampled areas.  The question may be posed of a whole deposit 
(global) or it may be more desirable to estimate smaller volumes within the planned mine 
area, e.g. stopes or blocks (local).  Many methods have been evolved to tackle this problem, 
from hand-contouring of values by the mine geologist to extremely sophisticated 
geomathematical analysis. 
 
The main difficulty with any estimation method in this context is that it is almost impossible 
to check whether the "predicted" value bears a close relationship with the "actual" value.  
The only reliable way to decide if an estimation method has "worked" is to test the eventual 
value of ore against the predicted value.  This is, more often than not, impossible - even 
allowing for the time factor involved.  To know the "actual" value of a mined block it has to 
be sampled intensely. and these values with their positions recorded accurately.  
Alternatively, blocks may be passed through the concentration process individually and 
these results recorded.  In most producing mines neither of these alternatives are practicable 
or seen to be important.  Another problem with comparing in-situ (so-called) mineable 
reserves with production figures is the introduction of many variables into the concentration 
process -- dilution, wastage, possible stockpiling, mill recoveries and so on. 
 
This paper describes a study undertaken to answer the question "Does Geostatistics Work?".  
To remove ambiguity, Geostatistics here refers to the practical applications of the Theory of 
Regionalised Variables as developed by Georges Matheron in Fontainebleau, France  (cf.  
Journel & Huijbregts, 1978). 
 
Perhaps it would be best to begin by defining the question with a little more precision.  
What is really meant by "work"?  We have (say) a prediction of grade value for some given 
volume.  This will differ from the "true" value over that volume.  An error is incurred by the 
estimation procedure.  The main selling point of Geostatistics is that, whatever estimator 
you use, the "standard error" of that estimate can be calculated using the semi-variogram.  
Our question is, then, does the "standard error" produced by geostatistical theory really 
reflect the accuracy of the estimate produced.  If the theory matches up with the practical 
experience, then we can use geostatistical methods with confidence in other applications.  
For example, if we know that geostatistics measures the standard error of an estimate with 
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accuracy, then we can be confident that the estimation technique giving the smallest 
standard error (Kriging) must be the best one. 
 
This paper attempts to answer the question "Does geostatistics genuinely measure the 
accuracy of predicted values?". 
 

CASE STUDY 

The Mine  
 
Geevor Tin Mines Ltd. in its present form was registered in 1911, although there is evidence 
that mining in the Geevor lease area extends well back into the eighteenth century.  The 
Geevor and Levant mines are situated at Pendeen in Western Cornwall (U.K.). Three shafts 
serve the mine, although only Victory Shaft is used for ore haulage. 
 
Ore is extracted from the underground lodes by overhead shrinkage stoping, between 
horizontal development drives (on lode) approximately 100 feet apart.  Drilling and blasting 
is used to break rock in both stope and development heading, utilising compressed-air rock-
drills.  Tramming cars and electric locomotives provide transport to Victory Shaft for 
hoisting.  Gravity methods are used in the mill to recover the cassiterite concentrate (65% 
Sn).  In the financial year ending March 1976, 106 thousand tonnes of ore were treated 
yielding just under 900 tonnes of cassiterite concentrate. 
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The Data 
 
The study which is described in this paper was carried out on the Simms Lode of Geevor 
Mine.  The cassiterite vein is almost vertical, and its total developed length (at 1976) was 
just under 7,000 feet in a north-west/southeast direction.  The lode lies about a kilometre 
from Victory Shaft, and comprises nine developed levels from 600 feet below surface to 
1400 feet.  The cassiterite vein is divided into several major sections by "guides" -- quartz-
filled faults -- and minor branchings.  The area selected for this detailed study is in the 
central portion of the lode, and it has been shown by other studies (geological and statistical) 
that this area may be considered as one continuous unit.  Figure 1 shows a section drawing 
of the study area.  The vein is narrow enough and continuous enough to be treated as a 
reasonably flat plane in two dimensions, and all sections are drawn an this understanding.  
The different modes of shading merely denote the years at which the data was added to the 
continuing study.  Although some development was available on level 14 (1400 feet below 
surface) this has been omitted for simplicity. 
 
The lode is sampled by chipping across the vein (but not the gangue) in the hangingwall of 
the drive or the stope.  The vein averages about two feet wide, and the normal stoping width 
is forty inches.  The bagged sample is returned to surface for vanning assay which produces 
a value for 'content of recoverable cassiterite'.  This is expressed in pounds of cassiterite per 
ton of ore (lb/ton).  The width of the lode is measured in inches on site.  Prior to March 
1971 development drives were sampled at five foot intervals, but this was changed to ten 
feet, and in 1976 to three metres.  In the study area all development except on level 6 and for 
minor westward extensions on 10, 11 and 12 was completed prior to March 1971.  Thus, 
virtually all drive sampling is available at five foot intervals.  Stopes are sampled, usually, at 
fortnightly intervals.  This produces a very approximate grid of samples within the stoped 
area.  Figure 2 shows an enlarged subsection of levels 12 and 13. Each cross denotes a chip 

sample.  Note how closely the drive is 
sampled compared with the stope. 
 
The sections were originally hand-drawn in 
the Survey Office at Geevor.  For this study 
each sample was assigned two co-ordinates 
relative to an arbitrary origin in order to 
position it an the two-dimensional plane.  
Figure 2 is actually a computer plot of the sub-
area shown.  In all there are about 2,700 stope 
samples and 1,900 drive samples in the study 
area.  It must be assumed that all samples are 
comparable -- i.e. have the same 'support'. 
 
It is common practice to value vein deposits 
such as this using the "accumulations" of the 
samples.  That is, the assay value is multiplied 
by the width.  This has not been done in the 
study described.  The variable discussed 
throughout this paper is "grade" or assay 
value.  Justification for this decision may be 
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found in Clark (1979).  This reference also contains a complete listing of the data used in 
this investigation. 
 
 
SEMI-VARIOGRAMS 
 
The semi-variogram is an essential tool in any geostatistical analysis.  It provides a graphical 
and numerical measure of the "continuity" of the mineral values within the deposit.  In a 
normal reserve estimation only development samples would be available to construct the 
"experimental" semivariograms.  This reduces the calculation to a very simple one, since the 
sampling is done at regular intervals along each drive, either at five or ten foot, except for 
the occasional cross-cut from the shaft.  Experimental values can be calculated for any 
multiple of five feet.  A decision has to be made on how far to carry this calculation.  For 
various reasons, the experimental semi-variograms were produced for distances up to 250 
feet on each level in the lode separately.  At first glance there seems to be little or no 
correlation between the assay values along the drives, and vast differences between levels in 
the lode. 

 
An immediate question arises as to whether these differences between the levels are simply 
due to "sampling variation" or whether they are due to some inherent structure in the lode.  
Some authorities (David, Guarascio) have suggested that such differences may be due to the 
samples following a log-normal type of distribution.  In the log-normal distribution the 
standard deviation of a set of samples is directly proportional to the arithmetic mean of 
those samples.  Thus if the "local mean" shifts slightly, the standard deviation will also shift 
accordingly.  Since the sill of a semivariogram (if it has one) is equal to the variance of the 
sample values, a shift in the 'local mean' will have an even greater effect on the 
semivariogram sill. 
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Table 1: Sample means and standard 
deviations by level. 

level arithmetic standard 
 mean deviation 
   

6 34 34 
7 40 51 
8 56 78 
9 46 48 

10 57 73 
11 77 89 
12 79 105 
13 53 63  

 
 
 
Table 1 shows the mean and standard deviation of the sample grades for each level 
separately.  It can easily be seen that the standard deviations rank in the same order as the 
experimental semi-variograms in Figure 3. A graph of mean versus standard deviation 
illustrates the proportional effect very well.  The correlation coefficient is, in fact, 0.95. 
 
It would seem from this evidence that the difference between the level semi-variograms is 
due to the proportional effect - and presumably the log-normality of the grade distributions.  
In actual fact, the samples are not log-normally distributed but may be characterised by a 
mixture of two log-normals - so we must presume that proportionality also holds under this 
circumstance. 
 
According to the authorities (op cit) the next stage in the variogram analysis is to 
"standardise" each level semi-variogram by the square of the local mean.  That is, each 
calculated semi-variogram is divided by the square of the arithmetic mean of the samples 
which were used in its calculation.  This was done, and the resulting semi-variograms are 
shown in Figure 5.  The picture is now much more homogeneous.  The highest and lowest 
semivariograms now differ onlv by a factor of two, whereas in the "unstandardised" graph 
the highest and lowest differed by a factor of ten.  Since the levels now appear to have 
comparable structures we can combine them to form one overall experimental semi-
variogram for the whole section, and to fit a model for use in the later estimation 
procedures. 
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The overall "standardised" experimental semi-variogram is shown as the dots in Figure 6. 
The dashed line is the compound value of the variance divided by the square of the 
arithmetic mean.  This would be a first estimate at the value of the sill of the model (if it 
exists).  Attempts to fit one of the simple models for semi-variograms, i.e. linear, spherical, 
de Wijsian etc. fail completely.  
 

 
 
It is clear that a large nugget effect is present, at a level of about 0.70. Note that this semi-
variogram is dimensionless, since all the values have been divided by the square of the mean 
grade.  Thus this nugget variance must be read as "0.70 multiplied by the square of the local 
mean".  The sill clearly exists and takes the value 1.55. However, the curve between the two 
(intercept and sill) cannot be approximated by a spherical model.  It is possible to fit a 
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model which is a mixture of two spherical models.  A fitted model is shown as the solid line 
in Figure 6. It has two spherical components with ranges of 15 feet and 125 feet 
respectively, and with sills of 0.60 and 0.25. This implies that samples within 125 feet of 
one another are correlated, but to a fairly weak extent.  Samples within 15 feet are much 
more highly correlated, but about 45% of the total variation in the sample values seems to 
be due purely to random behaviour - perhaps a reflection of the type of mineralisation.  This 
tends to imply that no matter how many samples are taken, there will always be a large 
unpredictable component in whatever we try to estimate. 
 
The semi-variogram model to be used in the estimation procedure will be: 
 

for distances (h) less than 15 feet 
 

 
for distances between 15 and 125 feet 

 

 

and for distances greater than 125 ft. 

γ(h) = 1.55 

 
TESTING THE ESTIMATION PROCEDURE 
 
Having produced a model for the semi-variogram of this section of the lode, we can now 
embark upon an estimation procedure.  Suppose we wish to estimate a volume which 
possesses an actual (unknown) grade, say T. 
 
Suppose we use a linear estimator, that is one which is a simple linear combination of the 
grades of the surrounding samples.  We may denote this by T*.  In the prediction an error 
will be made which will be equal to T - T*.  Using the semi-variogram we can produce a 
measure of the reliability of the estimator in the form of the "estimation variance", σ@e.  
Since we are using a "standardised" semivariogram, the estimation variance produced will 
be "relative to the local mean".  That is, the calculated variance must be multiplied by the 
square of the local mean before it becomes a true measure of the spread of the errors.  The 
calculated variance can be denoted by σ@i, so that: 

 
The only problem now is to define what exactly is meant by the local mean.  The published 
authorities are not very explicit on this point, but presumably this should be interpreted as 
the "expected value at this point".  This must mean the actual value at that point (or over 
that volume), i.e. T. Thus, the standard error of the estimate T* should be given by 
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In practice, of course, we would not know the value of T so that the standard error of T* 
would be estimated by 

 
To test the estimation three quantities are needed — T, T* and a . The estimator T* will 
(according to the theory) be drawn from some kind of probability distribution with mean T* 
and standard deviation σe. That is, for any estimation we have one sample from such a 
distribution.  Unless it is possible to carry out several estimations which result in the same 
standard error, it is difficult to test whether the procedure is 'working" or not.  Suppose a 
new variable is proposed: 

 
No matter what kind of distribution T* follows, the z variable will have a distribution with a 
zero mean and a standard deviation of 1. Now, if several estimations are carried out, each 
will yield a z value.  If the theory and method of application are correct then all of these z 
values will come from a distribution with mean zero and standard deviation 1. This 
produces a situation which can easily be tested -- carry out several estimations. calculate the 
z values and see if they have a mean of zero and a standard deviation of 1. 
 
 
The Case Study 
 
In the study area under consideration the only "actual" values which we know with 
reasonable certainty are the measured values at the sample sites within the stopes and 
development drives.  Since the drive samples were used to calculate the experimental semi-
variograms, they will be excluded from the testing of the estimation technique.  This should 
ensure an objective and unbiassed test, and leaves upwards of 2,700 "known" T values to 
use in the testing.  The next problem is to decide on which estimator to use.  Any linear 
estimator may be chosen, and in this case the choice was the Kriging estimator.  The 
procedure followed was: 
 

1) Consider each stope sample in turn; 
 

2) Find all other stope samples within a given distance (δx) in the horizontal direction, 
and within the same stope; 

 
3) Use these stope samples to produce a Kriging estimate and Kriging variance for the 

"point"' under considerations 
 

4) Correct the Kriging variance for the local mean; 
 

5) Calculate the corresponding z value; 
 

6) Include this z value in the calculation of mean and standard deviation, and in the 
histogram. 
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In the computer program written for this analysis the histogram was centred on zero and 
scaled so that the total range ran from −3 to +3.  The individual z values were not stored at 
all.  A decision has to be made on the size of δx.  The larger it is, the longer the program 
takes to run.  Mini-tests using level 13 only (726 samples) produce virtually the same output 
for 6x ranging between 25 feet and 65 feet.  Distances over 65 feet were considered 
impracticable -- especially since the dominant range of influence is only 15 feet.  The final 
results given in this paper were all calculated for 6x equal to 25 feet.  In correcting the 
Kriging variance for the local mean, the "true" value of the stope sample was used, so that  

 
for each stope sample.   
 

 
 

Table 2: Parameters of transformed errors by level. 
  

level arithmetic standard 
 mean deviation 
   

7 -1.28 3.09 
8 -1.86 2.94 
9 -1.29 2.10 

   
12 -1.76 3.31 
13 -1.63 3.14 

 
The histogram of the resulting z values is shown as Figure 7. Negative values of z imply that 
T' has over-estimated T, and positive values imply under-estimation.  For clarity, all samples 
below −2.75 have been included in the group −3 to −2.75. Similarly, all samples greater 
than +3 are included in the group +3 to +3.25. The mean of the z values is −1.60 and the 
standard deviation is 2.96. Table 2 shows the means and standard deviations by level so that 
it may be seen that these values are consistent over the whole lode. 
 
The only conclusion which we can draw from this histogram and these parameters is that the 
Kriging variances do not reflect the true accuracy of the estimation procedure.  A standard 
deviation of 3 for the z values implies that (in general) the supposed Kriging standard 
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deviations are too small by a factor of 3. That is, the Kriging variances are a factor of 9 too 
small.  Closer inspection of the histogram allows us to break this conclusion down into 
more detail.  The computer program does not record the extreme values of z. so we do not 
know how long the negative tail is.  However, we can see that the positive side of the graph 
is truncated at a value of +1.  This implies that for samples which have been underestimated 
the Kriging variance given by theory is far too large.  For samples which have been over-
estimated the supposed variance is far too small.  In other words, we will be vastly 
overoptimistic about over-estimated samples and rather pessimistic about underestimated 
ones.  This is not only undesirable but could prove disastrous! 
 
 
A Retrial 
 
In practice we would not know the value of T which we were trying to estimate, but would 
only know T*.  Suppose in (4) above the Kriging variance was corrected by the estimate of 
the local mean, i.e. T*, so that 

 
The above procedure was repeated on this basis, and the resulting histogram is shown in 
Figure 8. The overall mean of the z values is 0.09 and the standard deviation is 1.45. Table 3 
gives the level by level parameters, again showing that these parameters are consistent 
throughout. 
 

Table 3: Parameters of 'estimated' transformed errors by level. 
  

level arithmetic standard 
 mean deviation 
   

7 0.22 2.46 
8 0.11 1.47 
9 0.08 1.29 

   
12 0.06 1.28 
13 0.06 1.17 

 
The picture is a lot more encouraging than the previous one.  The mean 'transformed' error is 
very close to zero, although consistently positive on all levels.  The standard deviation is 
still somewhat larger than the expected 1.00. There is also a truncation, but this time at the 
lower end, and there is still rather a long tail -- but not nearly so remarkable as that in Figure 
7. We now seem to be over-optimistic about the accuracy of under-estimated samples and 
vice-versa.  On the whole the Kriging standard deviations seem to be under-estimated by 
about 45%. 
 
This latter analysis taken in isolation would seem to support the "working" of the 
application of geostatistics.  However, it is somewhat disturbing when taken in context with 
the previous analysis.  If the theory is correct then surely the theoretical analysis - with T 
known - should give a much better picture than the practical analysis - with T unknown.  
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The case study so far has resulted in entirely the opposite situation.  Should we therefore 
conclude that geostatistics does not work as according to theory? 
 

 
 
 
 
AN ALTERNATIVE APPROACH 
 
In the analyses above we have followed the stages of the accepted form of geostatistical 
analysis.  Having calculated "local" experimental semivariograms and demonstrated that the 
"proportional effect" was present, we standardised each level by the local mean, combined 
the individual levels and emerged with an overall experimental standardised semi-
variogram.  To this we fitted a model which was 'relative to the local mean'.  We then 
followed the usual Kriging procedure to estimate each stope sample in turn and compared 
the errors in prediction by means of the z transformation.  The conclusion reached was that 
if we take the actual value of the stope sample (T) as the "local mean", the resulting 
estimation variances bear very little relationship to reality.  If we take the estimated value 
(T*) in place of the local mean the resulting estimation variances give an acceptable picture 
of the reliability of the errors, although the standard deviations are under-estimated by about 
45% and the shape of the histogram is decidedly odd. 
 
Suppose we take a rather different approach and return to the original .raw' experimental 
semi-variograms.  Each level is calculated from several hundred inter-related sample values 
and we have illustrated that in each level the sill is directly proportional to the square of the 
sample mean.  Suppose an alternative hypothesis is put forward.  Suppose that the variation 
of mean and standard deviation of the sample grades between each level is due simply to 
them being different sets of samples from the same log-normal type distribution.  Under this 
hypothesis the semi-variograms are not standardised but combined to form one overall semi-
variogram -- this might be referred to as the 'raw' experimental semi-variogram.  This 
combined semivariogram is shown as the dots in Figure 9, with the overall sample variance 
drawn in as the dashed line. 
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This graph exhibits a strange zigzag behaviour which is presumably the proportional effect 
differentiating between those levels with five foot sampling and those with ten foot.  A sill 
appears to be present at about 5,675 (lb/ton)2, and a nugget variance of 2,575 (lb/ton)2.  
This nugget effect represents 45% of the total sill value - exactly the same proportion as in 
the standardised model.  Bearing this in mind, a model was proposed with two ranges of 15 
and 125 feet, and with sills of 2,200 (39% of total sill) and 900 (16%) respectively.  That is, 
exactly the same model as before but with a total sill of 5,675 (lb/ton)@ instead of 1.55. This 
is shown as the solid line in Figure 9. and appears to be a perfectly adequate fit.  This, 
perhaps, supports the alternative hypothesis, since the fitting of essentially the same model 
would tend to suggest that 'standardisation' is superfluous.  However, it can be seen that 
deriving such a complex model from the zigzag semi-variogram in Figure 9 would have 
been rather more difficult if we had not had the standardised model to refer to. 
 

 
 

Table 4: Parameters of errors by level 
  

level arithmetic standard 
 mean deviation 
   

7 0.01 0.60 
8 0.00 1.10 
9 0.00 0.63 

   
12 0.00 0.84 
13 0.00 0.94 
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Since the models are the same except for a multiplying factor, the estimates produced will 
be identical.  The only difference will be in the estimation variances.  Whereas the 
standardised model gave standard errors directly proportional to the value being estimated, 
the "raw" model gives standard errors which are independent of the size of either true value 
or estimator.  In other words, the former approach assumed that low grades could be 
estimated more accurately than high ones.  The present approach assumes that the accuracy 
of the estimation depends only on the sample configuration -- not the sample grades. 
 
The six-point analysis described previously was respected with the "raw" model, omitting 
step (4).  The histogram of transformed z values is shown in Figure 10, and possesses a 
mean of 0.00 and an overall standard deviation of 0.76. Table 4 shows the parameters by 
level.  In this case the mean error an all levels is zero, but the standard deviations vary 
between 0.60 and 1.10 in no recognisable pattern.  This is an encouraging sign since it 
suggests that the variation is stochastic and not due to some consistent bias.  The histogram 
of the transformed errors is much more intuitively pleasing than either of its predecessors.  
Whilst still slightly skewed, there are no truncation points or excessive concentration of 
values.  This evidence leads us to conclude that in this case the standardising of the 
experimental semi-variograms has led us into an erroneous picture of the standard errors of 
the estimation procedure. 

 
 

 
 

 
CONFIDENCE INTERVALS 
 
It is common in quoting standard errors for estimates to attempt to convert these into 
confidence intervals.  The main difficulty in this process is in what distribution to assume 
for the errors.  Most workers happily assume that their prediction errors follow an 
approximately Normal distribution, so that a 95% Confidence Interval for the estimate 
would be given by: 

 
An empirical 95% Confidence Interval can be found from the histogram of the transformed 
errors in our case study.  This is done by taking the centre 95% of the histogram, and using 
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the z values at either end of this interval instead of the ±2 above.  Taking the three 
approaches in turn produces: 
 

♦ Standard errors calculated by using the standardised semi-variogram multiplied by 
the 'true' mean (T) produces an empirical 95% interval of 

 
♦ Multiplying the standard error by the estimated mean T' produces an interval of 

 

 
♦ Using the 'raw' semi-variogram gives an empirical 95% confidence interval 

 
This lends weight to the decision that the 'raw' semi-variogram leads to a better evaluation 
of the actual errors incurred in the estimation.  Assuming a 95% Confidence Interval of ±2a 
in either of the standardised cases could lead to disastrous consequences, whereas in the 
"raw" case it will give a fairly accurate representation of the actual Confidence Interval. 
 
 
CONCLUSION 
 
The question posed by this paper was "Does Geostatistics Work?".  We have considered one 
case study only and the conclusion which must be drawn is "Yes provided the so-called 
proportional effect is ignored".  If the "raw" semi-variogram is used, then the standard error 
predicted by geostatistical theory accurately measures the reliability of the estimation 
method.  We have also seen that the usual assumption of the Central Limit Theorem -- i.e. 
that a 95% Confidence Interval may be produced by taking ±2σe -- is also fairly safe if the 
"raw" semivariogram is utilised. 
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