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Abstract

Geostatistical methods of estimating ore reserves and other spatial phenomena are becoming
increasingly wide spread in their use. Properly applied, Geostatistical estimation fallsinto two
stages -- the "modelling" of the spatial variability within the study area; and the use of this
spatial model to provide an appropriate estimation technique. The first stage usually consists of
construction and interpretation of semi-variogram graphs, and the second is the development of
the corresponding Kriging method.

Because of the apparent subjectivity inherent to the first stage of a geostatistical analysis,
attempts have been made to provide methods of "testing" whether a particular semi-variogram
model (say) adequately represents the study area. Increasingly, the choice of model is being
justified by a process known as "Cross Validation". With this approach, the analyst uses a
partial data set to estimate values at actual sampled positions. "Rea" and "estimated” values
are then compared in such away that the model can be accepted or rejected.

This paper discusses the process of cross validation in some detail, using case studies as
examples. Some problems with the technique are illustrated and discussed.

Cross Validation

Theterm "Cross Validation" seems to have been introduced into Geostatistical applications
around the late 1970's. although the concept of comparing actual values with estimatesis far
older (cf. Krige 1959). David's Geostatistical Ore Reserve Estimation (1977 p.56) gives afully
worked example of comparing estimates from two different estimation methods with the "true"
values from sampled areas. The purposein this example isto show that the Kriging estimator
gives asmaller error variance than an Inverse Distance Squared method. He suggests
comparing the histograms of the two sets of errors, in addition to their respective means and
standard deviations.

By 1979, Parker et a are using the term "cross-validation" to check that their method of
prediction was the correct one. In that case, the variable of interest was the proportion of
mineralised composites in a uranium deposit. In the same volume: Davis & Borgman mention
"crossvalidation" as a procedure available to check the validity of a semi-variogram model;
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Rendu uses comparison of theoretical and observed means and errors to decide between kriging
methods as does Clark. In three out of four studies, therefore, the purpose of the cross
validation was to justify the kriging technique chosen to perform the eventual evaluation.

This method of cross-checking a technigue seems to have been welcomed by workers seeking a
method of reducing the amount of subjectivity in Geostatistical estimation. By 1983, the
NATO ASI on Geostatistics contained almost a dozen papers which referred to cross validation
as amethod of testing the fit of the semi-variogram model to the data. Theinterest in the
problem is reflected, also, by the number of papers on "robust” estimators and statistical fitting
procedures. However, these are outside the scope of the present paper.

Historically, then, Cross Validation has grown from a virtually unknown technique in the mid-
1970'sto aroutine tool in the Geostatistician's armoury. In addition to published papers, it is
now common practice amongst consultants to include a chapter in their reports justifying the
choice of semi-variogram model and (sometimes) the kriging technique selected for estimation
purposes.

What is Cross Validation?

The term "cross validation” is now generally accepted as describing the following procedure:

- Onesampleiseliminated from the data set.

- Thesurrounding samples are used to produce an estimate of the value at this (now)
"unsampled" location, using a Geostatistical estimation method.

- Theactua error incurred in this process is measured by:

(Actua Vaue - Estimated Value)

- The"expected" or "theoretical" erroris measured by the kriging variance calculated
during the estimation process (or by its square root, the kriging standard error).

The procedure produces alist of actual and theoretical errors. At this point, however, authors
diverge on what should actually be done with thislist.

The most common procedure, judging by the literature, isasfollows. The actual errors are
averaged. If the estimation is unbiassed this average should be zero. The variance of the errors
is calculated and compared with the average kriging variance for all the estimations. The ratio
between these two quantities is expected to be one, if the estimation procedure has been carried
out correctly.

A minor variation on this process was used by Clark (op cit) to take account of different
standard errors where data are not taken on aregular grid. Each "actual error” is divided by the
appropriate "theoretical standard error" to form a standardised (2) statistic. These statistics
should then average zero and have a standard deviation of one.
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In al cases. then, the actual error is compared with the expected error in such away that two
statistics are produced. These are expected to be zero and one respectively. Achieving
(0.0,1.0) becomes the "proof" that the original semi-variogram model "fits' the data. The logic
which produces this conclusion is:

The correct model gives (0,1)

| get (0,1),
therefore the model is correct

It iswith thislogic that this paper concerns itself.
A Test Case

To illustrate the use of cross validation a set of data was simulated under ideal conditions for
analysis by Geostatistics. To avoid distractions and concentrate on the investigation of cross
validation, the deposit follows a Normal distribution, a specified semi-variogram model and has
been densely sampled on aregular grid.

The ssimulation used for this case study isloosely based on ataconite deposit. The variable
being studied is Iron and averages around 70%Fe by weight. The areais rectangular, 450
metres east/west and 300 metres north/south. It has been sampled, for the purposes of our
study, on a 10 metre grid starting 5 metres in from the edge of the area. This gives 1,350
samples for the investigation.
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Figure 1 -- Experimental Semi-variogram

and Linear model.

A semi-variogram was constructed for this dataand is shown in Figure 1. A simple Linear
model has been fitted to the graph by eye, and is found to have a slope of 1.00. Thereis no
apparent nugget effect. The cross validation procedure was applied to this data set resulting in
aset of "Z" statistics which had an average of 0.006 and a standard deviation of 0.907. The
constant standard error, i.e. for points other than those around the edge, was 2.777%Fe.
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Here we run into our first practical snag. We expect statistics of 0.0 and 1.0 if we have the
correct model (and procedure). What significance is there in the fact that we have 0.907 instead
of 1.000? It isquite remarkable that all case studies using cross validation in the literature
guote figures which are very close to theideal. There are no instructions as to how to interpret
deviations from the expected statistics. Let us consider this particular case in detail.

A value of 0.907 for the standard deviation suggests that our "actual" errors are only 90% as
large asthe "theoretical” errors. That is, our semi-variogram model is being too pessimistic.
Should we revise our model to achieve the desired statistic? This can be arranged quite simply
because the kriging variance is directly proportional to the slope of the semi-variogram. If we
adjust the slope of the model semi-variogram by afactor of 0.907*0.907 the error variances will
become exactly equal, i.e. our Z standard deviation will be equal to 1.000. The constant kriging
standard errors will become 2.519%Fe instead of 2.777%Fe. The estimates, however, will
remain completely unchanged since these are independent of the slope of the model. (A similar
effect would be achieved in the case of a Spherical model by scaling the sill value).

For this data, then, we would get Z statistics which averaged 0.007 with a standard deviation of

1.000 if we used a Linear semi-variogram model with slope 0.823. The only problem isthat this
line goes nowhere near the points on our experimental semi-variogram.

A Biassed Estimate?

Perhaps it would be a good idea to pause here to consider this problem. We expect a standard
deviation for the standardised errors of 1.0. In the calculation above, we have calculated the
standard deviation in the traditional way -- that is, the mean square deviation from the mean
gives us the variance and we square root this to obtain the standard deviation. It isusual to
divide the sum of squares by "n-I" to calculate the variance. The justification for thisis that
there are "n-1" independent pieces of information from which to calculate the statigic. In our
case, thisis patently untrue. Our sample values are highly related to one another and so are the
estimates which we make of them. The errors for adjacent samples will also be related,
although possibly not in such a ssmple fashion. Therefore, when we calcul ate a classical
standard deviation -- whose derivation is based on independent samples -- we produce a biassed
estimate of the real standard deviation of the Z statistics. Perhaps that is our problem here.

Figure 2 shows the histogram of the "Z" statistics. Theoreticaly, if we have the correct model
this distribution should be Normal with mean zero and standard deviation one. Fitting a

distribution to this histogram produces a mean of 0.006 and a standard deviation of 0.907. A ¢*
goodness of fit test yields a statistic of 14.8 with 18 degrees of freedom. However, once again
we are violating the conditions needed for the classical statistical test. A c? test assumes that
the observations are drawn randomly and independently from the distribution.
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Figure 2 - Histogram of Z statistics
for Linear Model, slope 1.00

It would seem, then, that we need to find an empirical method of deciding whether our figure of
0.907 is significantly different from 1.000. If the deviation is due to our calculating classical
statistics from highly unclassical data perhaps we can compensate for this by taking random

subsets from the full data set.

Randomising the Statistics

In the discussion above, we used 1,350 inter-related sample values to estimate the standard
deviation of the"Z" statistics. If our semi-variogram model is correct, we expect this standard
deviation to be equal to 1.0. In an attempt to produce a more representative statistic, we will
take arandom subset of the samples and calculate the standard deviation from these. That is,
we take our list of Z statistics and select (say) 150 samples at random from the list. We then
calcul ate the mean and standard deviation of this smaller set of randomly drawn samples.

Rather than do this once and risk hitting an extreme value, the process was repeated 1,000 times
and histograms constructed of the results. A subset size of 150 was chosen, Any other size
could be chosen with little effect on the following results. Figure 3 shows the histograms of (a)
the average Z statistic for the set of 150 samples and (b) the sandard deviation of the sets of
150. Both of these histograms show no deviation from Normality. The average values of the
subsets vary around the overall average, and range between -0.22 and +0.26. The standard
deviations range from 0.74 to 1.05 and average 0.902.

It would seem that taking random samples from the complete set of cross validation statistics
does not significantly change our troublesome value of 0.907. Rather, we must go back to the
original data set, take our subsamples from that and perform the whole cross validation exercise
with only (say) 150 samples. In thisway, the estimates and standard errors are produced from a
randomised sample. Thus, hopefully, the Z statistics should conform more to the requirements
of our statistical approach.
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Of course, we could take this procedure to its logical extreme and recal culate and remodel the
semivariogram each time. This would be a pragmatic approach to a "jack-knife" technique.
However, in the absence of an automatic method for fitting semivariograms, thisis not
considered practical.
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subsets of 150 samples from Figure 2. Figure 3(b) Standard deviations of
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Cross Validation of Subsets

A subset of 150 data points was selected from the original 1,350 sample values. A cross
validation exercise was carried out on these 150 samples using a linear semi-variogram model

with aslope of 1.00%Fe* /m and no nugget effect. The Z statistics were produced and their

mean and standard deviation calculated. This process was repeated 100 times. A larger
number would have been desirable, but the time factor proved prohibitive.

Figures 4(a) and (b) show the variation in mean and standard deviation of the Z statistics for
these 100 subsets of 150 samples. These are directly comparable to Figures 3(a) and (b).
Figure 3(a) shows averages of subsets of Z statistics from the cross validation on 1,350
samples. Figure 4(a) shows averages of Z statistics from cross validation of subsets of 150
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samples from the original 1,350. That is, in Figure 4 only the 150 samples are used to produce
the Z statistics.

Similarly Figures 3(b) and 4(b) show the standard deviations of the Z statistics in each case.
Visual comparison of these graphs should be rewarding. It should be borne in mind, however,
that Figure 3 is based on 1,000 subsets and Figure 4 on only 100. The lumpy nature of the
histograms in Figure 4 is probably due to the small number of subsets. All four histograms give

very good ¢ goodness of fit statistics when compared with a Normal distribution.

Comparison of Figures 3(a) and 4(a) show broadly similar shapes. The averageinFigure 3(a)
15 0.002, whilst that in Figure 4(a) is-0.011. The remarkable difference between thetwo isin
the spread of values. The standard deviation in Fig.3(a) is 0.072 compared with 0.015 in
Fig.4(a). That is, cross validations amongst a small set of data are far less variable than similar
Sized subsets amongst alarge set. Thisisalittle puzzling.

Comparison of Figures 3(b) and 4(b) on the other hand show similar . variation" amongst the
standard deviations with 0.052 and 0.061 respectively. The major difference hereisin the
"central" average value. The small sets of data give atypical standard deviation of 0.967 whilst
the subsets of the large set average around 0.902 (almost identical to the origina
0.907). Combining this result with the one above leads us to the conclusion that the cross
validation seems more stable on a smaller, scattered set of datathan it does on arandom
selection from adense regular grid. The small data subsets give final statistics of -0.011 and
0.967 to be compared against our "ideal" 0 and 1.

Conclusions from Cross Validation

From the limited study described above we can draw some tentative conclusions.

Although the technique leads us to look for statistics of zero and one there is no clear indication
of how far our values can deviate from these "ideal" statistics. Since our samples are inter-
related, classical statistical methods offer little help in either producing stable estimates of the
statistics or in testing for significant deviation from the expected values of these statistics.

Two empirical methods of investigating the variability of the statistics have been used above.
In the first, the list of 1,350 "Z" statistics has been subsampled many times over and the
behaviour of these subsets examined. This produces well behaved graphs which vary around
the average values produced by the whole data set. In the second, the original dataset is
subsampled and separate cross validation exercises are carried out on each subsample. This
also produces well behaved graphs (allowing for the small number of subsets) but markedly
different behaviour in the summary statistics.

It should be emphasised that thisis asingle example. There may be many cases in which the

latter approach would give "worse" statistics than the former. What does appear clearly is that
simply subsampling the Z statistics from the full cross validation exercise gives little extra
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information. Some computer packages give statistics on two "halves' of the datato illustrate
how sensitive the cross validation is to removing some of the data. The end-user should ensure
that these statistics are produced from two extra cross validation exercises and not just subsets
of the original calculation.

Hypothesis Testing

Cross validation as described above is an example of what statisticians call "Hypothesis
Testing". Most standard statistical tests are based on this procedure:

- A hypothesisis set up

- A'ddtistic" isderived (mathematically) that will have predictable behaviour if the
hypothesisistrue

- A valueof the"statistic" is calculated from the data available

- Thissingle valueis compared to the distribution of expected values

In almost all cases the hypothesis set up is the opposite to that which isdesired. For example, if
we wish to deduce that two quantities are different we set up a hypothesis that they are the
same. Then, if they are significantly different, the calculated statistic should deviate markedly
from the expected behaviour. In other words, the value given by the datais avery unlikely one
in the expected distribution. On this basis, the user will reject his hypothesis as unsatisfactory.

Notice, though, that this approach is hemmed about by circumlocutions. The final statement
would be something like: "If the hypothesisis true, we have a 1% chance of obtaining a statistic
as high asthat given by this set of data’. We have no right to say that, for instance, thereis only
a 1% chance that the hypothesisistrue. We have even lessright to say that thereisa99%
chance that the hypothesisis untrue. In the final analysis a subjective decision must be taken. If
ahypothesisisregected at (say) the 1% level, we must accept the risk that the hypothesisis
actualy true and that we happen to have the one sample in ahundred which gives an extreme
statistic.

On the other hand, suppose we obtain a value for the statistic which conforms to the "expected
behaviour". Doesthis prove that the hypothesisistrue? No, it doesnot. It tellsusvery little.
It says: "thereis no evidence from this calculation that the hypothesisis untrue”. An
"acceptable” statistic does not necessarily support the hypothesis but does lend it credence.

The Case Study Again

In the example detailed above, the (now) standard method of cross validation was illustrated on
alarge set of samples taken on adense, regular grid. A semi-variogram was calculated and a
model fitted toit. A hypothesis was set up that the model fitted the data. Z statistics were
produced by Ordinary kriging. The expected behaviour of these statistics was that they would
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have a mean of zero and a standard deviation of one. After alittle harmonising to reduce the
non-independence aspect of the sampling, values of -0.011 and 0.967 were obtained.

These values would appear (intuitively) to be close enough to the expected values so that we
may accept the hypothesis. We have no quantitative guide as to the risk factor involved here,
except for the empirical information contained in the histogramsin Figures 3 and 4.

This paper, so far, isastraightforward and (perhaps) unoriginal presentation of atechnique now
used routinely in Geostatistical applications. The remainder offers ararer commodity -- the
opportunity to investigate other models and compare their behaviour to the one detailed above.
Because of the restriction on space, this study will consider only two other models and those
only in brief.

Let us call the above model, i.e. Linear with slope 1.0 0 %Fe/m, Model 1. At this point we will

refer to the others ssmply as Models 2 and 3. In each case, the set of 1,350 samples has been
used to produce a set of 1,350 Z statistics. In both cases the histogram of the Z's is acceptably

Normal under the ¢ goodness of fit (hypothesis) test. Model 2 gives an average of 0.009 and a

standard deviation of 0.921. Model 3 give -0.029 and 1.014 respectively. Under the cross
validation approach, both of these models fit the data more closely than Model 1.

Choosing Between M odels

Three models have been fitted to the ssmulated taconite deposit and all of them produce
acceptable cross validation statistics. We must ook for some other way of comparing them
before we can decide which is "best". Figure 5 illustrates a simple method of comparison,
using scatter graphs of one quantity against another. Figure 5 shows (a) True Vaue (X axis)
versus Estimated Value (Y axis) and (b) True value (X) versus Z statistic (Y) for each model.
The value scale is 45%fFe to 92%Fe in each case and the scale for Z is-3.4to 3.4.

In all cases the estimated values are highly correlated to the true values-- which is adesirable
characteristic. In all casesthe Z statistic is correlated with the true value, which is not so
desirable. For Models 1 and 2 this correlation is around 0.34, whilst for Model 3 it is 0.64.
Some correlation is expected between Z and the true value, because of the smoothing effect of
kriging on point estimation. However, the high value given by Model 3 givesrise to some
concern.

On the basis of Figure 5, then, there seems to be little to choose between Models | and 2. Model
3 seemsto be a bit less desirable, giving too much smoothing on the estimates and marginally
more scatter when comparing them with the true values.

Another method of comparison might be to try the "subsampling” approach used earlier to
randomise the sample sets. This process changed the simple mean and standard deviation of
0.006 and 0.907 to derived parameters of -0.011 and 0.967 for Model 1. For Model 2 the new
statistics are -0.003 and 0.978. Again we have no basis for choosing between 1 and 2. Model 3,
on the other hand, gives new statistics of -0.60 for the mean and 1.547 for the standard
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deviation. At last we have a deviation from the ubiquitous zero and one. Although Model 3
cross validates nicely on the complete data set, on random sets of 150 samplesit gives standard
deviations between 1.3 and 1.8. These values would seem, intuitively, to be significantly
different from 1.00. On this basis we could regject the hypothesis that Model 3 fits the data --
although we cannot quantify the risk factor involved in this decision.

Figure 5: Visual Comparison for Cross Validation Statistics for 3 Models

(a) True Value versus Estimated Value (b) True Value versus Z statistic
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Figure 6: Anisotropic Semi-variogram,
Model and Experimental.
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The Models

Itisunusual, at least for this author, to judge the fit of a semivariogram without seeing
experimental and model curves on the same graph. Figure 6 showsthe experimental semi-
variogram and Model 2 for visual comparison. It can be seen from Figure 6 that the deposit
under study is, in fact, not isotropic. Only two directions are shown, these being the major axes

of the anisotropy. The models for these directions are Linear with slopes 0.66%Fe/m and

1.25%Fe’ /M. Intermediate directions have intermediate slopes varying in an €llipsoidal

fashion. The cross validation procedure was unable to distinguish between an incorrectly fitted
isotropic model and the "correct” anisotropic model.

Only the large number of samples enabled usto reject Model 3 as unsuitable, after the
subsampling exercise. That model consisted of a pure nugget effect with the value 10.72%F¢’.

It should be fairly obvious that there are alarge number of other models which are equally
acceptable.

Summary

This paper has discussed the technique of cross validation, as currently practised, in more detail
than hitherto. Two problems have been highlighted.

When a cross validation is performed how much deviation from the expected values of 0 and |
can be accepted?

If acceptable values are obtained does this prove that the model correctly represents the data?

The conclusion which must be drawn from this study is that cross validation, as such, does not
remove the subjective element from model fitting. However, it can be utilised as a data
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exploration tool via histograms, scattergrams and more detailed statistical exercises. The
decision rests with the user with no clear assessment of the risksinvolved in an incorrect
choice.

Many eminent authors have stated that the choice of semi-variogram model is virtually
irrelevant since the final results - maps, block estimates, etc will be more or less the samein
any case. It isavery smplejob to demonstrate that thisis untrue. But suppose it was true that
the basic model is unimportant.

Then why are you using Geostatistics?
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