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Abstract Little has been published to date on the practical difficulties of ore reserve 

estimation in three-dimensional deposits.  Some authors have suggested condensing the 

problem into two dimensions, but this is not always practicable or desirable.  A suggestion 

and a FORTRAN IV Function Segment are provided which may alleviate some of these 

difficulties. 
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I�TRODUCTIO� 

 

At the feasibility study stage of a potentially mineable deposit, the ore-reserve valuation 

generally is carried out using data from (usually vertical) boreholes drilled through the 

deposit.  Ideally for economic appraisal of the site, local as well as global estimates of ore 

grades and tonnages must be made.  Where a deposit is of a seam or vein type, or where it 

comprises a sedimentary layer, the problem is essentially a two-dimensional one.  The width 

(or depth or thickness) of the deposit, and the accumulation (grade times width) of metal 

may be considered as measurements or point samples in a two-dimensional plane (Sinclair 

and Deraisme, 1974).  There may be some 'unrolling' problems, but essentially these are not 

statistical.  However, in a three-dimensional deposit new problems occur.  If local estimates 

are to be produced, these must be block estimates on a bench by bench basis.  Many such 

applications are to be recognized, this author having experience with uranium, nickel, and 

lead/zinc deposits of disseminated character.  In these, two-dimensional simplifications are 

not always possible.  It is intended to use one of these deposits as an example throughout 

this paper.  It is not possible to describe the deposit in full but for the purposes of this paper, 

it may be said that we have a disseminated nickel deposit in northern Norway, whose grades 

follow a spherical semivariogram with a range of influence of about 50 m. The deposit was 

explored by means of diamond drillholes�not always vertical.  It was required to estimate 

the reserves on the basis of blocks 25 m by 25 m, with a 10 m bench height.  This gave a 

total of approximately 4,000 blocks on 20 benches.  A small deposit. 

 

BLOCK ESTIMATIO� 

 

To estimate each block by the method of Kriging, we must first set up the Kriging system of 

equations.  These equations require that we must evaluate the average semivariogram 

between each of the samples we wish to include in the estimation procedure and the 

unknown area.  Also we require the values of the average semivariogram between each pair 

of samples, and between all points within the unknown area.  In one or two dimensions 

these evaluations present little or no problem. 
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In three, however, the problems can be great.  Two approaches have been suggested, and 

this author ventures to suggest a third. 

 

 
 

 
 

David (1976) suggests that a deposit may be considered bench by bench.  That is, we 

ignore all data above and below the bench under consideration.  Thus, both information and 

data span only the bench width (see Fig. 1) and the problem may be reduced to a two-

dimensional one.  Figure 2 shows the bench as if from above.  The average grade of the 

borehole intersection then may be considered as coming from a point sample, and the block 

is reduced to a panel.  This approach has many advantages as far as computation goes.  

Two-dimensional auxiliary functions (cf.  Clark, 1976a) or relatively simple approximations 

may be used to evaluate the necessary semivariogram values, and hence the Kriging system.  

It is advantageous also in that only the average grade of the borehole intersections within 

each bench need be stored by the computer. 

 

 
There are disadvantages to this approach, as illustrated in Figure 3. Boreholes may not 

make intersections with the full bench width.  For example: boreholes may stop before the 

bottom of the bench (a); assaying may not have started until part way into the bench; (b) 

there may be core loss, or unassayed sections in the hole; (c) holes may be inclined, so that 

the intersection of the borehole with the bench is longer than the actual bench width.  If 

these problems do not occur or it is considered an adequate approximation, then David's 

approach may be used.  However, there is one other situation which cannot be handled by 

this approach.  Suppose, as in our example, we have a bench width which is smaller than the 

range of influence of the semivariogram.  Imagine a situation in which a borehole goes 

through, or close to a block to be estimated (Fig. 4).  It is intuitively more reasonable to 

expect that the portions of borehole (i) above and below the block should have a closer 

relationship to, and hence more influence on, the shaded block than the portion of borehole 

(ii), say, on the same bench.  That is, we would like to include sections of the boreholes 
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above and below the bench in the Kriging system, because this should improve the 

estimation of the block grade considerably. 

 

 
 

How much information above and below the block we wish to include in the estimation 

would depend on the bench width, size of the block, range of influence, and also on how the 

core is to be weighted in itself.  Ideally, each core section which was assayed should be 

treated as a separate sample, and a Kriging system produced to determine the weight for 

each section.  In that situation, obviously, the more sections included the lower the 

estimation variance.  However, after a certain distance the increase in accuracy must 

become negligible-especially compared to the amount of work required to evaluate it.  

Alternatively, the core length could be split into the 'internal' (to the bench) portion, and the 

'external' portions and each of these given an individual weight.  This may become 

complicated, but might be worth doing if the range of influence is not greater than the bench 

size.  A third possibility is to weight the whole length of core equally, that is average the 

length to be included in the estimation for each core and accord each one weight in the 

Kriging system.  This approach is favored by the author in situations such as the Norwegian 

nickel example, because it forms a workable compromise between the ideal situation and 

the practicalities of computing in a reasonable size 3-D deposit.  However, comparative 

studies remain to be carried out in any case study to ascertain the 'best' approach for the 

particular situation.  Having decided upon this approach, it remains to evaluate the amount 

of core which yields the 'best' estimators.  This could be determined by calculating the 

extension variance of a core of different length to a block of the desired size.  However, this 

returns us to the problem of calculating semivariograms in three dimensions. 

An alternative approach to David's is necessary once we have decided to work in three 

dimensions.  Because 3-D auxiliary functions are intractable, we must produce numerical 

approximations to the required block-core, core-core, and block-block semivariograms.  If 

cores are parallel and of the same length, core-core relationships can be evaluated by the 2-

D auxiliary function γ( ; b).  Because our decision to work in 3-D was prompted partly by 

the fact that the cores are probably not of the same length, this simplification is unlikely to 

occur.  The simplest numerical solution to calculating the average semivariograms between 

such pairs is to approximate each volume or length by a close network of points.  A. 

Marechal (1975, pers. comm.) has stated that a block may be considered as a 4 x 4 x 4 

network of points, and that this will produce an accuracy of 1 percent in the final 

semivariogram.  Similarly a core might be considered to be a string of discrete points-

presumably 64 points along the length would give similar accuracy.  Then the average 

semivariogram between core and block would be calculated by evaluating the 

semivariogram between every point in the block and each point of the core (64
2
 

combinations) and then dividing by the number of combinations.  Each average 

semivariogram would need 4096 calls to the point semivariogram in its calculation.  This 
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approach is heavy on computer time and (the author feels) uncertain of the final accuracy of 

both approximated semivariograms and final estimates. 

A third approach has been suggested by this author elsewhere (Clark, 1976b).  Briefly, it 

is suggested that a block be represented not by a network of points, but by an array of 

vertical 'cores'.  That is, instead of n x n x n points, a block is approximated by n x n core 

segments parallel to its vertical sides.  Borehole cores are considered as themselves, not 

approximated at all.  This reduces calculation of average semivariograms from n
6
 point-

point evaluations to n
4
 core-core evaluations for the block-block average, n

2
 for the block-

core average, and 1 per core-core average.  The block-block semivariogram is evaluated 

simply, because all the 'cores' are the same length and parallel to one another.  The standard 

auxiliary function γ( ; b) may be used here.  Calculation of core-core or core-block 

semivariograms where one core is not parallel to another present a difficult problem - and 

are as yet unsolved.  However, for boreholes which may be considered to be vertical (sic) 

the calculation of core-core relationships presents no problems at all.  The author presents in 

Appendix I a FORTRAN IV Function Segment which will calculate the average 

semivariogram between any two cores of any lengths, in any relative positions and any 

distance apart so long as they are parallel, for a spherical model. 

 

 
 

The function is called GIMEL (the Hebrew letter G) and is used as follows (see Fig. 5): 

 

GAM = GIMEL (EL, B, H, D, A, C), 

 

where A is the range of influence and C the sill of the point semivariogram (spherical type); 

GAM is to contain the average semivariogram between two parallel cores of length  (EL) 

and b (B), a distance h (H) apart, whose ends are offset by a length d (D) as illustrated.  

Restrictions on the parameters are:  and b must be positive, b must not be greater than . 

If the user finds this restrictive, a simple insertion of about six lines will generalize the 

FUNCTION. d may take any value. h may be positive or zero.  This last enables different 

lengths on one borehole to be compared. 

 

OTHER USES OF GIMEL 

 

Although the use of the core-core function reduces the calculation of bench/block 

estimations considerably in the regular situation, this is not the only situation in which it 

might be useful.  Approximating one of the three dimensions by a continuous line allows 

greater attention to be paid to irregularities which may occur.  For example, in Eire, Pb/Zn 

deposits generally are confined to one stratum of the limestone.  The relatively irregular 

boundaries of this stratum make the estimation of block averages inaccurate if not 
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meaningless.  However, if the boundary between the strata can be fairly well defined (as is 

usual) then estimation of an irregular volume is relatively simple with the core-core 

approach.  Figure 6 illustrates how a block or stope near the irregular hanging wall might be 

approximated by cores, so that GIMEL then could be used for the average semivariograms.  

Similarly other irregularly shaped stopes, or edge blocks in an open pit could be estimated 

with no problem. 

 

 
 

 

A� EXAMPLE 

 

Producing simple tables for checking GIMEL is difficult because of the four arguments.  

However, a program example is given in Appendix II with its output, to enable users to 

check the FUNCTION.  Some checks also may be made against the standard function γ( ; 

b) by computing GIMEL (b, b, , 0, a, c).  Also GIMEL ( , , 0, h, a, c) may be compared 

with regularized semivariogram for length . 

 

 
 

The example used is a program to determine the extension variance of a vertical core 

section of length , at a distance h from the center of a block along a median through the 

block (see Fig. 7).  The disseminated nickel example has been used, that is a = 50, c = 1.0, 

blocks are 25 m by 25 m, benches are 10 m. A grid of 8 by 8 'cores' has been used to 

approximate the block.  Values of h range from zero, sample central to block, to 50 m, that 

is sample almost out of range.  Lengths of the core range from 2 m to 50 m and are centered 

on the center of the bench.  Also it may be noticed, the program takes advantage of any 

symmetry which might be present. 

 

Acknowledgments - The function GIMEL was first conceived and initially evaluated while 

the author was employed by the Norwegian Geological Survey in 1974.  The programs 

described in this paper were produced when the author was Visiting Professor of Geology at 

Syracuse University, Syracuse, New York and-were implemented on their DEC System-10 

computer. 

 

  



Computers & Geosciences, Vol. 3, pp. 173-180.  Pergamon Press, 1977.  Printed in Great Britain Page 6 

REFERE�CES 

 

Clark, I., 1976a, Some auxiliary functions for the spherical model of geostatistics: 

Computers & Geosciences, v. 1, no. 4, p. 255-273. 

Clark, I., 1976b, Some practical computational aspects of mine planning, in Advanced 

geostatistics in the mining industry: D. Reidel, Dordrecht-Holland, p. 391-399. 

David, M., 1976, The practice of Kriging, in Advanced geostatistics in the mining industry: 

D. Reidel, Dordrecht-Holland, p. 31-48. 

Sinclair, A. J., and Deraisme, J., 1974, A geostatistical study of the Eagle copper vein, 

northern British Columbia: Can.  Inst.  Min.  Metall., v. 67, no. 746, p. 131-142. 

 

 

 

Please note that, due to the inefficiency of the OCR program,  

Appendices have been omitted from this copy.  

If I cannot guarantee that it works, I won't hand it out. 

If you really want a copy of 35 year old Fortran code,  

please e-mail geoecosse@kriging.com 

 
 


