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REGULARIZATION OF A SEMIVARIOGRAM
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Abstract - The production of estimates using the technique of kriging, and the evaluation of the
accuracy of these estimates depends completely on the production of a model for the
semivariogram of the deposit. The process of choosing such a model can be complicated in
practice by the bulk and geometry of the samples taken. Some aspects of this problem are
discussed and some formulae and a FORTRAN IV subroutine are presented to ease the task of
modeling.
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INTRODUCTION

It has been said that the semivariogram is the basic tool of the Theory of Regionalized Variables.
The computation of an experimental semivariogram may be tedious, but rarely difficult. It isin
the interpretation and fitting of a model to a practical semivariogram that the real difficulties
arise. For instance, to carry out a kriging exercise of any type, we require for the deposit a
theoretical model of the semivariogram. This model produces for us the relationship between
two points a certain distance apart. Note, however, that we said points. Seldom in practice can
we measure a value, say the grade of a mineral, at a point. At the feasibility stage of mine
development we are concerned mostly with borehole cores; during development and production
we may have many different types of samples, but all of them have one thing in common. They
have a certain bulk, a certain geometrical shape and volume. In some instances, they may be
assayed using different techniques. All of these factors combine to form the "support" of the
samples. A semivariogram which has been calculated on one type of support will not be the
same as that calculated on another. The process, of averaging the grade over the bulk of a
sample, will influence the shape and behavior in such a manner that we must use an indirect
method to derive the theoretical model for the point semivariogram necessary to further analysis
and estimation.

REGULARIZATION
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Figure 1. Line of point samples, spacing /.

Suppose that we had a line of n point samples at regular intervals £ along a line (say a drive or a
raise). For example in Figure 1 points on the experimental semivariogram may be calculated
with ease:
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These points may be plotted on a graph of y* vs h, and a model for the point semivariogram
chosen and fitted directly to the data points.

Now suppose that, instead of a line of point samples, we are concerned with a borehole which
has been assayed in sections of length 1. We no longer know the assay value at some point x, but
rather the average value over a length (x—¢/2, x+¢/2). How will this affect the semivariogram?
Let us consider the problem from an intuitive point of view.

Consider two segments, or "cores", of length ¢ a distance h apart as in Figure 2. Suppose that
we knew the grade at every point along both of those segments. Then we could calculate y*(h)
for all the pairs of points, that distance h apart, by computing the difference in grade for each
pair, squaring the result, and averaging through all the pairs. However, suppose that we do not
know the grade at every point, but only the average grade of each segment. The semivariogram
calculated then must be denoted by
v ¢*(h), and this will be computed by taking the difference in the average grades, squaring and
averaging those. However, to obtain the average grade of the segment, all the variation of grades
within the segment has been eliminated. Thus, the average grade of the segment will be a more
regular variable than the average grade of individual points. If the variable is more regular, this
implies that the differences between any two of the values will be less. That is y¢*(h) will of
necessity be less in value than the corresponding y*(h), whatever the form of y*(h). Now
consider those models for y*(h) which possess a sill, and therefore a range of influence. Two
points which are farther apart than the range of influence, a, may be said to be independent. But,
two segments whose centers are a distance a apart will not be independent of one another,
because one-half of one segment will be within the range of influence of one-half of the other
segment. It is notuntil 2 =a + £, that is the ends of the segments are a apart, that no point in
one segment influences the other. Thus, for a point model y*(h) with a certain range of
influence, it is manifest that y ¢*(h) will have a range of influence ¢ units larger. This
phenomenon of the change in character of the semivariogram as the support of the sample
changes is known as regularization, and y ¢*(h) is termed the regularized semivariogram.
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Figure 2. Two segments length /, distance h apart.

REGULARIZATION OF THE USUAL MODELS

The mathematics of the process of regularization are in Matheron (1971), and need not be
discussed here. However, it may be of advantage to outline the effect of regularization on the

more usual models of the semivariogram. The linear model of y*(h) is the most widely used of
those without a sill, and is characterized by:

v(h) = ph h=o.



For samples of length ¢, we determine that:

2
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That is, for distances greater than ¢ - which is all we have in practice - the regularized
semivariogram is a straight line with the same slope as the point model, but with an intercept on
the y axis of - p #/3 (see Fig. 3), if the semivariogram is not complicated by a nugget effect.
Thus, the model for the point semivariogram may be obtained by estimating the slope for the
regularized semivariogram.
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Figure 3. Linear semivariogram—point and regularized.
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Figure 4. Exponential semivariogram—point and regularized.



There are two usual models for semivariograms with a sill. The exponential model:
y(h)=C{l-¢™} 0=<h=w

When regularized by ¢, this becomes:

a a’
y(h) = C[27+7§ (1—e"YHe (1 - ") - 2}] h=1
()
With a somewhat more complex form for the parabolic part with h<¢&. The sill of this

regularized semivariogram obviously will be lower than the sill of the corresponding point
model. This can be shown to be:

C = 2C{$—‘;—;(1 —e‘”“)}. 2)

We have experimentally values of the regularized semivariogram, that is y¢*(h) for various
values of #<{. We need to be able to estimate the parameters of the point semivariogram, a and
C, from y¢* in some manner. Having done this, we may substitute these values into the equation
(1) to give 'theoretical' points on y ¢, for comparison with vy ¢*.

The first step is to plot a graph of y¢* against / (see Fig. 4). From this we can estimate C¢
immediately as the asymptote of the curve. In practice, of course, y¢* will be more irregular. A
first approximation for a, now may be determined. Draw a straight line through the first few
points on v ¢* and extend it until it meets the sill level C¢. The value of / at which the two meet
should be approximately a¢. We have seen that a¢ = a + £, so an estimate for a follows
immediately.

Having estimated C¢ and a (if only approximately) equation (2) may be used to determine an
approximation for C. These values, a and C, then may be used in equation (1) to produce values
of y¢(h). Plotting these points on the same graph as y¢*(h) will give a visual comparison
between the model and the data. The parameters can be adjusted if necessary to improve the fit,
and the process repeated. For example, if all the values of y¢ were slightly higher than the
corresponding y ¢*, either the estimate of the range of influence is too small or the estimate of the
sill is too high, or both. Visual inspection should reveal which. The process is repeated until we
produce a v ¢(h) which seems "close enough" to y ¢*(h) for our satisfaction. The final values of a
and C then can be used to characterize the point semivariogram for the deposit.
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Figure 5. Spherical semivariogram—point and regularized.



The third model - and perhaps the one in widest use in mineral valuation - is the spherical or
Matheron model. This semivariogram, expressed as:

3h 3
7(h)=c{5—2-”;} h=a

C h=a

is the popular one which exhibits linear behavior near the origin, gradually curves off, until at h
= a it reaches its sill and stays there permanently. Many mineral deposits seem to conform to
this sort of behavior, but the discontinuity in the formula renders the mathematical handling
more complex than the other models. This discontinuity also divides the resulting formula for y ¢
(h) into a series of alternatives given various boundary conditions on h and a. These formulae
will not be given in the text, but are presented in Appendix I in the form of a FORTRAN IV
subroutine which will be described more fully in a later section. However, we can say that the
relationship between the sill of y¢(%) and that of y(h) is given by:

3
,%O Q_o - EOQ/Q\ + Q,;}> Qﬁ_o

C=goprrrfr=r

2
=§6{15‘-1"-4‘;—2} Iza (3)

If the linear behavior for the first few points of y(h) is extended to meet the sill, the distance at
which this occurs is 2a/3 (see Fig. 5). So, we may approximate a and C as follows:

e guess Cy¢, the sill of the regularized semivariogram;

e produce the line through the first few points up to C¢, to give h = 2a ¢/3, and hence a

Iy

e a=aqa¢-{ asbefore;

e calculate C from the appropriate part of equation (3);

e use attached subroutine to produce values of y ¢(%) using a and C;

e plot or graph; compare with y¢*(h);

e adjust a and C if necessary; repeat, etc.
When a satisfactory fit has been obtained, we have the point spherical model for the deposit and
may proceed with estimation and kriging.

SUBROUTINE REGSPH

The subroutine included in Appendix I is a FORTRAN IV routine to evaluate points of a
regularized spherical semivariogram given the following information;

NH - number of points to be evaluated.
A - range of influence of the point semivariogram.
C - sill of the point semivariogram
EL - length of samples producing regularization.
H - array containing values of / for which y¢(h) is to be calculated

The subroutine is evoked by:
CALL REGSPH (GL, H, NH, A, C, EL)
and returns in array GL the values of the semivariogram vy ¢(%) for the corresponding values of /
in H. Note that the distances in H need not be in ascending order. To assist the user in



implementing the subroutine and checking for possible mispunches, a program segment and
printout are included in Appendix II.
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APPENDIX I

00270 SUBROUTINE REGSPH(GLsHsNHsAsCrEL)
00280 DIMENSION GL(NH) sH(NH)
00290 C
00300 C THIS SUEBRDUTINE CALCULATES THE VALUES OF A SEMIVARIOGRAM
00310 C REGULARISED BY LENGTH ELs WHERE THE PUNCTUAL SEMIVARIOGRAM
00320 C FOLLOWS A SPHERICAL MODEL WITH RANGE A AND SILL C.
00330 C
00340 U=EL/A
00350 IF (U-1.) 16516917
003460 16 FART2=20.%U-2.,XUXUXU
00370 GO TD 14
00380 17 PART2=8./(UXU)-30./U+40.
00390 C
00400 14 DO 15 I=1sNH
00410 U=H(I)/A
00420 IF (V-1.) 21+22,22
00430 21 IF (U+V-1.) 23,23,24

24 Y2=UxV
83:23 Fl=4,-15. % (U+V) +20 . X (U+V IR CUAL) —V2RUX (10, -V2) —UXV2% (30, ~5, XV2)
00460 FART1=F1/(UxW)
00470 GO TD 20
00480 23 v2=uxy
00490 TUV=(U+V Y X (U+V )X (U+V)
00500 P1=TUVX(10.~(U+VI X (U+V) ) -UXU2%(30.-5.%XVU2)-V2%U%(10.,~V2)
00510 PART1=F1/(UXU)
00520 GO TO 2¢
00530 22 PART1=20,
00540 20 IF (V-U) L+2+2
00550 1 IF (U=-1.) 35454
00560 3 IF (U-V-1.) 5+6+6
00570 4 IF (U-V-1.) 7+8s8
00580 2 IF (V-1.,) 959+10
00590 10 IF (1.+U-V) 1251211
00600 5 TUV=(U-V)%X(U-V)X(U-V)
004610 2=U%y
00620 F3=TUVX(10 .~ (U-VIk(U-V) )45, kU2XUX(6,~-V2)-V2XUX(10.-V2)
004630 FART3=F3/(UxU)
00640 GO 10 15
00450 7 TUV=(U-V)X(U-V)X(U-V)
00660 F3=TUVX(10.—(U-VIX(U-V) ) =15, X (U=-V)=4,0420.XUX(2.X%U-V)
00670 FART3=F3/ (UxW)
00680 GO TO 15
00490 6 V2=UxV
00700 uv=y-v
00710 F3=4.,0420 . KUVXUV—-15 . KUVHS . XUXV2X (6, =V2) =V2KVUX(10.-V2)
00720 PART3=P3/(U%U)
00730 GO TO 15
00740 8 PART3=30.%(V-U)/(UXUY+20.0
00750 GO TO 1S
00760 9 Y2=y%y
00770 PART3=10.%UX(3,-V2)+10.XUX(V2-1,)-UXUX(S5.%XV-U)
00780 GO TO 15
00790 11 TVU=(V-UIX(V-U) X(VU-U)
00800 T2=(V-U)X(V-U)
00810 PART3=(15.X(V-U)+10.XTUU-T2XTVU-4,0-20.XVX(V-2.,%U) )/ (UxU)
00820 GO TO 15
00830 12 PART3=20.
00840 15 GL(I)=0.025%CX(FPART1-PART24+PART3)
00850 RETURN

00860 END
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APPENDIX 1I
TEST PROGRAM FOR REGULARISATION SUBROUTINE

DIMENSION GAMMAL(S0)»H(S0)
INCH=-4
KOUCH=~1
INCH IS INFUT CHANNEL» KOUCH IS OUTPUT CHANNEL

NH=50
00 10 I=1s+NH
10 H(I)=FLOAT(I)*0,025
A=1.00
C=1.00
DO 11 J=1+5
EL=FLOAT(J)%*0.1
CALL REGSFPH(GAMMALsHsNHsA»CsEL)
WRITE (KOUCHr»100) A-C
100 FORMAT (1H1y45HREGULARISED SEMIVARIOGRAM FOR SFHERICAL MODEL s
1/3Xs24HWITH RANGE OF INFLUENCE »FS5.2s9H AND SILL sFS5.2//)
WRITE (KOUCH»101) EL
101 FORMAT (29H LENGTH OF REGULARISATION IS sFS5.2///
131H DISTANCE GAMMA-L(H) /)
WRITE (KOUCH»102) (H(I) GAMMAL(I)»I=1sNH)
102 FORMAT (3XsF10.4y8XsF8.4)
11 CONTINUE
STOF
END



Regularization of a semivariogram

REGULARISED SEMIVARIOGRAM FOR SPHERICAL MODEL
WITH RANGE OF INFLUENCE 1.00 AND SILL 1.00

LENGTH OF REGULARISATION IS 0.10

DISTANCE GAMMA—-L(H) 0.3750 0.4328
0.4000 0.44644
0.0250 0.0086 0.4250 0.,4953
0.0500 0.0311 0.4500 0.5253
0.0750 0.0629 0.4750 0.5546
0.1000 0.0993 0.5000 0.5829
0.1250 0.1343 0.5250 0.6103
0.1500 0.,1730 0.5500 0.6367
0.1750 0.2094 0.5750 0.6621
0.2000 0.2456 0.6000 0.46864
0.,2250 0.2813 0.6250 0.7096
0.2500 0.3166 0.6500 0.7316
0.2750 0.3515 0.6750 0.7524
0.3000 0.3858 0.7000 0.7719
0.3250 0.4196 0.7250 0.7901
0.3500 0.,4527 0,7500 0.8070
0.3750 0.4852 0.7750 0.8224
0.4000 0.5171 0.8000 0.8344
0.4250 0.5481 0.8250 0.8489
0.4500 0.5784 0.8500 0.8599
0.4750 0.46078 0.8750 0.8693
0.5000 0.6363 0.2000 0.8772
0.5250 0.6639 0.9250 0.8837
0.5500 0.6905 0.,9500 0.8888
0.5750 0.7161 0.9750 0.8928
0.4000 0.7406 1.0000 0.8956
0.6250 0.7639 1.0250 0.8976
0.6500 0.7861 1.0500 0.,8989
0.6750 0.8071 1.0750 0.8997
0.7000 0.8268 1.1000 0.9001
0.7250 0.8452 1.1250 0.9003
0.7500 0.8622 1.1500 0.%9004
0.7750 0.8779 1.1750 0.2004
0.8000 0.8921 1.2000 0.9004
0.8250 0.9047 1.2250 0.9004
0,.8500 0.9159 1.2500 0.9004
0.8750 0.9254
0.9000 0.9333 LENGTH OF REGULARISATION IS 0.30
0. 9250 0.9395
0.9500 0.9441
0.9750 0.9471 DISTANCE GAMMA-L (H)
1.0000 0.9488
1.0250 0.9497 0.0250 0.0029
1.0500 0.9500 0.0500 0.0114
1.0750 0.9500 0.0750 0.,0249
1.1000 0.9501 0.1000 0.0429
1.1250 0.9501 0.1250 0.0647
1,1500 0.9501 0.1500 0.0900
1.1750 0.9501 0.1750 0.1181
1.2000 0.9501 0.2000 00,1484
1.2250 0.9501 0.2250 ©.1804
1.2500 0.9501 0.2500 0.2136
0.2750 . 0.2474
LENGTH OF REGULARISATION IS 0.20 0.3000 0.2811
0.3250 0.3144
0.3500 0.3470
DISTANCE GAMMA-L(H) 0.3750 0.3790
0.4000 0.,4104
0.0250 0.0044 0.4250 0.4409
0.0500 0.0169 0.4500 0.4707
0.0750 0.0363 0.4750 0.4996
0.,1000 0.0614 0.5000 0.5276
0.1250 0.0909 0.5250 0.5547
0.1500 0.1238 0.5500 0.5808
0.1750 0.1587 0.5750 0.6059
0.2000 0.1944 0,6000 0.6299
0.2250 0.,2300 0.6250 0.46527
0.2500 0.,2651 0.6500 0.6744
0.,2750 0.2998 0.67350 0.6949
00,3000 0.3339 0.7000 0.7141
0.3250 0.3675 0.7250 0.7320

0.3500 0.4005 0.7500 0.7485
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0.7750 0.7637 1.0750 0.7951
0.8000 0.7775 1.1000 0.7973
0.8250 0.7899 1.1250 0.7990
0.8500 0.8009 1.1500 0.8003
0.8750 0.8105 1.1750 0.8013
0.9000 0.8189 1.2000 0.8020
0.9250 0.8260 1.2250 0.8025
0.9500 0.8320 1.2500 0.8028
0.9750 0.8349
1.0000 0.8408
1.0250 0.8438
:'gggg g'gzgg LENGTH OF REGULARISATION IS 0.50
1.1000 0.8492
s gt DISTANCE GAMMA-L (H)
e 0.8510 0.0250 0.,0017
it 0.8512 0.0500 0.0066
1.2250 0.8513 0.0750 e
1.2500 0.8513 0.1000 s
0.1250 0.,0389
LENGTH OF REGULARISATION IS 0.40 0.1500 0.0549
0.1750 0.0731
0.2000 0,0933
DISTANCE GAMMA-L (H) 0.2250 0.1153
0.2500 0.,1389
0.0250 0.0022 0.2750 0.1638
0.0500 0.0085 0.3000 0.1899
0.3250 0.2170
0.0750 0.0186
0.1000 0.0323 0.3500 0.2447
0.1250 0.0492 0.3750 0,2728
0.1500 0.0690 0.4000 0.3012
0.4250 0.3294
0.1750 0.0914
0.4500 0.3578
0.2000 0.1161
0.2500 0.1709 0.5000 0.4125
0.2750 0.2004 0.5250 0.4386
0.3000 0.2308 0.5500 0.4437
0.5750 0.4878
0.3250 0.2619 :
0.3500 0.2932 0.6000 0.5128
0.3750 0.3244 0.6250 0.5327
0.4000 0.3552 0.6500 0.5536
0.4250 0.3853 0.467350 0.5733
0.4500 0.4146 0.7000 0.5918
0.7250 0.6092
0.4750 0.4431
0.7500 0.6255
0.5000 0.4707
0.5250 0.4973 0.7750 0.6406
0.8000 0.6545
0.5500 0.5230
0.5750 0.5476 0.8250 0.6674
0.8500 0.6791
0.6000 0.5712
0.8750 0.6897
046250 0.5936
0.9000 0.6993
0.46500 0.6149
0.9250 0.7079
0.6750 0.6350
0.7000 0.6538 0.9500 0.7155
0.7250 0.6714 0.9750 0.7223
0.7500 0.6877 1.0000 0,7281
0.7750 0.7027 1.0250 0.7332
0.8000 0.71465 1.0500 0.7376
0.8250 0.7290 1.0750 0.7413
0.8500 0.7403 1.1000 0.7445
0.8750 0.7505 1.1250 0.7471
0.9000 0.7594 1.1500 0.7493
0.9250 0.7673 1.1750 0.7510
0.9500 0.7741 1.2000 0.7524
0.9750 0.7799 1.2250 0.7535
1.0250 0.7889

1.0500 0.7923



