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Abstract—The problem of complex distributions resulting from mixtures of different populations is 
common in most branches of the earth sciences.  The program ROKE estimates the parameters of 
mixtures of normal or lognormal distributions, from data available in histogram form.  The full 
method is described, together with suggestions on the adaptation of the program for other 
distributions. 
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INTRODUCTION 
 
The problem of mixtures of distributions is one encountered in many fields, from biometrics (Dick 
and Bowden, 1973) to mining (Sichel, 1972).  The situation arises if a specimen may have derived 
from one of several populations possessing similar distributions, but perhaps different means and 
standard deviations.  For example, in a biological situation, size measurements will be influenced 
(usually) by the sex of the subject.  In mining or geology the characteristics of a deposit may be 
modified by reworking or secondary mineralization phases.  Specimens drawn from separate phases 
of mineralization may exhibit different statistical behavior, but may not be distinguishable (or 
distinguished) by geological or chemical analysis.  The task of identifying and quantifying such 
phases of mineralization by the method presented in this paper is discussed in greater detail in Clark 
and Garnett (1974). 

The program given here is a nonlinear least-squares approach to the solution of mixtures of 
normal or lognormal component distributions.  The method of nonlinear least squares is described in 
detail, and is applicable to all classes of nonlinear models.  The particular application to the 
situation of mixtures of normal distributions follows, with indications of how the method may be 
adapted to other distributions, and to mixtures of dissimilar distributions.  The existing program is 
concerned only with normal and two-parameter lognormal distributions, because these were the 
ones of most interest to the author.  However, work is under way to produce adaptations for 
truncated distributions, and for the three-parameter lognormal. 

The nonlinear approach has been used for this problem in the past, the present program having 
been inspired originally by McCammon's (1%9) work.  However, this program ROKE has 
eliminated approximations inherent in that and other previous approaches, and attempts have been 
made to produce an accurate and efficient computer program.  ROKE will handle a mixture of four 
normal (or lognormal) component distributions, with data presented in the form of a histogram 
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containing up to 30 group intervals.  These limits may be changed easily within the program.  It may 
be noted that the program does not require that the intervals in the histogram be uniform. 
 
 

THE METHOD OF NONLINEAR LEAST SQUARES 
 

Observations are available on n independently observed sample points for two variables y and z. A 
model is postulated in which y is thought to be a function of  z, modified by a purely random "error" 
component, that is 

 
where θ'= (θ1, θ2, θ3, θ4, - - -, θk ) is a vector of k unknown parameters to be estimated, and ∈i  is 
the random component of yi, i = 1, 2, 3, 4,. . ., n. The function F(z;θ) is a nonlinear function of the 
θj which can not be transformed into a linear function.  For example: 

 
is a nonlinear function of the two parameters θ1, and θ2, whereas 

 
is "intrinsically linear" because a logarithmic transformation 

 
allows θ'1 = loge θ, and θ'2 = 1/θ, to be estimated by linear least squares. 

To estimate θ by the method of least squares the criterion 

 
must be minimized with respect to each of the θj.  In linear least squares the result is a system of 
simultaneous equations which can be solved for the θi.  In a nonlinear situation a direct solution is 
not possible, because the resulting equations contain functions and crossproducts of the θj.  
Therefore an iterative or approximation method must be employed. 

Suppose a close approximation to the real values of θ is made, say θ0, where θ0 = {θ01,  θ02, . . . 
θ0k}. Then the Gauss-Newton method (Draper and Smith, 1967) may be used to produce more 
accurate approximations to 0. 

Using Taylor's expansion: 
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If θ0 is close enough to θ the higher order terms may be neglected so that: 
 

 
where 

 
denotes 

 
Equation (2) then can be differentiated with respect to each θj to produce a set of simultaneous 
equations resulting in a solution for ∆θ. 

    
where 

 
and D is a k by k matrix defined as 

 
where 

j=1,2,3,4,...,k,  l=1,2,3,4,...,k. 
A new set of approximations to θ are produced, that is θ1 = θ0 + ∆θ.  The procedure is repeated 

with θ1, θ2 and so on until no further improvement in the sum of squares can be achieved.  If θ0 is 
not close to θ the result may be a local minimum and not the optimum.  If θ0 is at a great distance 
from θ, the usual result is that no improvement of the estimates can be determined, and fresh 
approximations must be made. 

Faster convergence to the optimum may be obtained by adding fractions of ∆θ to θ0, and 
choosing the values which give the lowest sum of squares.  The author has determined inverse 
powers of 3 most useful in this respect, that is 1/3, 1/9, 1/27 and 1/81, and these have been 
incorporated into the computer program. 
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MIXTURES OF SEVERAL NORMAL DISTRIBUTIONS 
 

Suppose a model is postulated which is a mixture of m normal (Gaussian) distributions.  This 
implies that if a single specimen is taken from the overall population it must have derived from one 
of m component normal distributions.  The probability density function for the value of such a 
specimen would be: 

 
where αj  is the proportion of the overall population deriving from component distribution l; µl, is 

the mean of the lth component distribution; σl is the standard deviation of the lth component; and 
ϕ(z) is the probability density function of the standard normal distribution. 

The vector of parameters to be estimated is therefore: 

 
The cumulative distribution function of x would be given by: 

 
where ϕ(z) is the cumulative distribution function of the standard normal curve. 

In an analysis for the components of such mixtures of distributions, data are available usually in 
the form of a histogram-or can be converted easily to this form.  We shall denote the endpoints of 
the groups in such a histogram by x1, x2, x3, . . . xn,  where n is the number of groups in the 
histogram.  The 'frequency in group i' refers to the number of samples with values lying between xi-1 
and xi.  The 'observed proportion' of samples in group i is given by the frequency in that group 
divided by the total number of samples taken.  This will correspond to yi in equation (1).  

According to the model of a mixture of n components, the "expected" or theoretical proportion of 
samples determined in group i would be given by: 

 
The partial derivatives of F(z;θ) then become: 
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To implement the nonlinear least-squares solution for θ, the partial derivatives must be determined 
for the 3m - I parameters.  The partial derivatives Q(x;θ) are as follows: 
 
(a) Proportion parameters 

 
(b) Means of components 

 
(c) Standard deviations 

 
 

 
MIXTURES OF OTHER DISTRIBUTIONS 

 
(a) Lognormal 
By definition, if a variable is lognormal its natural logarithm has a normal distribution.  Thus, if a 
histogram is formed from the logarithms of the sample values, this may be analyzed as a mixture of 
normal distributions.  Once the means and standard deviations of these components have been 
determined, the corresponding parameters of the "actual" lognormal components can be determined 
from: 

 
The relative proportions of the mixtures are unaffected by the transformation.  If the data are only 
available in the form of a histogram, it is necessary to take logarithms of the endpoints of the 
groups, and continue the analysis as described. 
 
(b) Other continuous distributions 
Any distribution for which the cumulative distribution function and the probability density function 
can be calculated (numerically or analytically) may be used in such an analysis.  The sole 
requirement of the method is that the terms ∂Q/∂θi must be calculable. 
 
 
(c) Mixtures of different distributions 
There seems to be no theoretical restriction on analyzing for mixtures of dissimilar distributions.  
However, strong practical justification would need to be present, and good indications to be 
searched for in the types of distributions. 
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NUMBER OF COMPONENTS 
 

There seems to be no theoretical maximum to the number of components postulated.  The 
formulation of both model and technique is general for m. A practical constraint is that n must be at 
least as large as 3m, so that D is not singular, and the goodness of fit may be tested.  Obviously the 
more parameters to be estimated, the higher the dimensions being searched for a minimum.  It has 
been determined in practice that as m increases, the difference between θ0 and θ must decrease if the 
optimum is to be determined.  That is, the higher m is, the closer θ0 must be to the true value. 
 

GOODNESS OF FIT 
 

Once the optimum solution for θ has been determined, it is desirable to check the goodness of fit 
of the model to the data.  The author has found the χ@ test most useful for this purpose, although 
various alternatives have been suggested. 

The statistic used is: 

 
where f is the observed frequency in group i, and N is the total number of samples used. 

Under the null hypothesis that the samples were taken from a population which consists of a 
mixture of m distributions as postulated, S should have an approximate χ@ distribution with n - 3m 
degrees of freedom. 
 

THE PROGRAM ROKE 
 

The solution for the parameters of the mixed population was simplified slightly for the purposes of 
computation.  Rather than compare the observed proportion in each group with its expected value, it 
was decided to use the cumulative proportion up to the endpoint of each group, and compare this 
with its expected value.  That is, we redefine yi as the observed proportion of samples below 
endpoint xi, and replace equation (10) by: 

 
to give the expected proportion of samples below endpoint xi.  Equations (12)-(14) then give the 
partial derivatives for F(z;θ), and these are substituted into the nonlinear least squares method as 
described by equations (2)–(7). 

This modification gives a significant increase in speed of computation, and seems (in practice) to 
be more stable than the full method.  It also is analogous exactly to the standard graphical methods 
(Hald, 1952) which attempt to fit a model to the cumulative curves. 

It should be noted that the original definition of F(z;θ) in equation (10) must be used for the χ@ 
test described in equation (15). 

The information supplied to the program must be in the form of a histogram — although this may 
be modified easily — and a set of initial estimates for the unknown parameters of the particular 
model to be fitted.  These initial estimates may be made by eye (for the experienced user) or by 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


graphical methods.  The author has found probability plots of the cumulative curve particularly 
useful for estimating standard deviations. 

The program, as it stands, will solve for normal components for lognormal components as 
specified.  It is possible to estimate other distributions by changing the FUNCTION segments 
ATUAN and ENLAD, and if necessary the conditions imposed on the parameters within IFFISH. 
 
Program sections 
ROKE  Main Program Segment.  This controls input 

and output of the program, and the calling of the various routines. 
ANDRAD  This subroutine performs a χ@ test between the model specified by the 

parameters, and the histogram from the data.  It also provides a visual 
comparison between the model and the data. 

IFFISH This is the nonlinear least-squares routine, which solves for the "best" estimates 
of the various parameters.  Incorporated in the subroutine is a slightly modified 
IBM SSP routine for solving sets of simultaneous equations (lines 209-238 in 
Appendix II). 

ENLAD This function supplies the partial differential of F(X;θ) at value X with respect to 
parameter J, as given by equations (12)-(14) 

ATUAN This function gives the probability of a sample from a population with MC 
components, and the parameter values stored in PARS, taking a value below X. 
That is, function ATUAN provides values of Q(X;θ) as given by equation (9). 

HAVNOR This is a numerical approximation function for the standard normal cumulative 
distribution function Φ(x). 

OSSKIL is a numerical approximation function for the standard normal density function 
ϕ(x). 

 
 
Core requirements 

Program ROKE was developed and tested on the CDC 6400 installation at Imperial College, 
London.  The compiler used was the Minnesota FORTRAN Compiler MNF, which required 20,100 
words of core to handle this program. 

Once the program was compiled, the version presented here required 11,200 words of core to 
run.  A version which could handle ten components and a 75-group histogram required 11,600 
words.  However, this would be an extreme situation, and the existence of ten components would 
require a great amount of justification. 

A slightly modified version of this program runs on a 32K (8 bit word) minicomputer installation 
within the Department of Mineral Resources Engineering at Imperial College.  The program uses 
Double Precision throughout, and gives satisfactory accuracy of results. 
 
Run timings 

The program compiled under MNF in 1850 milliseconds.  A typical run of a three component 
analysis on a 25-group histogram took 4.3 sec, and a run of a seven component analysis on a 67-
group histogram took approximately 80 sec. 

Timings depend not only on the number of components in the model and the number of groups in 
the histogram, but also on how many iterations are required to determine the solution.  There is no 
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limitation placed on the number of iterations within the program.  It is the author's experience that a 
solution seldom runs to more than twenty iterations, and rarely to more than thirty.  The example 
quoted of a three-component analysis took 16 iterations. 

If it is desired to limit the number of iterations, to, say, 25 simply add after line 189 of Appendix 
II 
 

IF (ITER.GT.25) GO TO 10 
 
Input to program 

The form for the input of the data has been made as flexible as possible.  Titles and Variable 
Formats are read in alphameric form, and used for the various input data.  All input is read in one 
section of the main program, so that alterations may be made with ease. 
 

Card 1: TTL A title card for job identification. Up to 80 characters may be used. 
Card 2: Columns Variable 
 1-2 NG The number of groups in the data histogram 
 3 MC  The number of components to be included in the population 

model 
 4 NO N for normally distributed components, L for lognormal 

components, (default is normal). 
Card 3: FMT The format for the cards on which the frequencies in each histogram 

group have been punched. 
Cards 3a,b: FREQ The histogram frequencies, in the format specified by Card 3. 
Card 4: FMT The format for reading the upper endpoints of the groups in the 

histogram. Note that no upper end-point should be supplied for the 
last group. 

Cards 4a,b: EPTS The upper endpoints of the histogram groups, in the format 
specified by Card 4. 

Card 5: FMT The format for reading the initial estimates of the component 
parameters. 

Cards 5a,b: PARS The initial estimates of the component parameters, in the order:  
mean of component 1 
standard deviation of component 1 
proportion of samples coming from component 1 
mean of 2 
standard deviation of 2 
proportion of 2 
mean of 3, etc. 
No proportion should be supplied for the last component. 

 
An example of input cards is given in Appendix la. 
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Output from program 
The output has been designed to present, simply and concisely, the input data, the initial 

estimated model, and the final model, incorporating both quantitative tests and visual comparisons 
of the fit of models to data. 

The output is in two pages, and the longest line printed is 120 characters long.  An example of 
the printout is given in Appendix lb. 
 

Page 1:  Title for job 
Initial parameters 
χ@ goodness of fittest of the "initial" population to the data histogram 
A visual comparison of the data or "observed" histogram to the estimated 
or "expected" histogram. 

Page 2:  Title for job 
Number of iterations taken 
Root mean square deviation of estimated probabilities from the observed 
proportions 
χ@ goodness of fit test of the "final" population to the data histogram 
A visual comparison of the observed histogram and the final model. 
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Please note that, due to the inefficiency of the OCR program,  
Appendices have been omitted from this copy.  

If I cannot guarantee that it works, I won't hand it out. 
If you really want a copy of 25 year old Fortran code,  

please e-mail geoecosse@kriging.com 
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