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SY$OPSIS 

This paper reviews some of the traditional methods of reserves estimation based on 
lognormal distribution with or without an additive constant. In the rush to computerize mine 
planning and grade control generally, proven estimation methods, such as Sichel's t, seem to 
have been overlooked. 

By use of a personal microcomputer, the traditional methods were investigated thoroughly, 
the results being tested against existing tables and figures. 

The fitting of a lognormal distribution, including estimation of the additive constant, is 
discussed, and the calculation of Sichel's t estimator and its associated confidence limits is 
described in detail.   Payability calculations for a lognormal distribution are also covered 
briefly. 

The advantages of personal computers, particularly speed and ease of use, are emphasized. 
This low-cost approach permits detailed investigation of some of the assumptions and 
approximations inherent in the established methods of calculation. Several disturbing 
discrepancies are revealed in various factors, and some generalized statements made by 
previous authors are found to be over-simplistic. 

Full details are given of acceptable approximations and computer algorithms, and concern is 
expressed over the possible loss of proven methods under the welter of new, sophisticated 
computer software. 

  

Introduction 

The development and availability of personal computer power over the past few years have 
been phenomenal. The proliferation of manufacturers, operating systems, suppliers, and 
packages leaves the potential user breathless and (sometimes) bewildered. Whatever the 
choice of hardware the trend worldwide seems to be away from the giant mainframe 
computer towards the minicomputer and microcomputer. 

In this day of the 'personal computer on every desk', perhaps it is time to re-appraise some of 
the techniques that are traditionally carried out with pencil, calculator, and definitive tables. 
These methods, which have proved their value over any years of operation, can be emulated 
on computers of any size. Why, one asks, has this not been done? 



The main resistance to computerization seems to have been twofold. The inaccessibility and 
sheer cost of calculating (say) a Sichel's t estimator on a mainframe has been a major 
discouraging factor. Secondly, the need to acquire considerable computer expertise before 
being able to operate such systems persuaded all but a dedicated few to stay with the tried 
and trusted calculation methods. The advent of personal computers and the benefits of 'user 
friendly' software have removed both of these problems. 

This paper discusses three of the typical tasks undertaken at various stages of reserve 
estimation: 

  ((a)    the determination of lognormality of sample values and the possible choice of an 
'additive constant' for the three-parameter lognormal;  

  ((b)    the calculation of Sichel's t estimator and associated confidence levels for two- or 
three-parameter lognormals; and  

  (c)    the calculation of pay limit/pay value/percentage payability, which is generally 
undertaken with the use of such graphs as Krige's GRL20. 

The purpose of this paper is simply to discuss the implementation of the traditional practices 
on a digital computer, as has been done at Geostokos, London. Some advances in numerical 
techniques will be presented, but in all cases the underlying theory remains the same as that 
which has been proved in practice over the past forty years. 

The Lognormal Distribution 

All the tasks described above relate to the application of the lognormal distribution to 
sampling and estimation problems. Traditionally, samples are assumed to come from a 
lognormal type of distribution, sometimes modified by the introduction of a third parameter – 
the 'additive constant'. The efficacy of this approach in practice has been proved time and 
time again, particularly in its application to the problems of the Witwatersrand gold reefs. 
Other minerals too uranium, for example – have been found to follow the three-parameter 
lognormal. This has enabled workers to produce more reliable estimates for grades and 
tonnages in these situations. 

A typical approach to an estimation problem, then, would be to estimate values for the 
parameters associated with the relevant lognormal distribution and then to use these values to 
carry out payability calculations for the study area. The values that need to be estimated are 
the additive constant (if any), the average value, and the logarithmic variance of the 
distribution. Several methods are available for this calculation, but this paper confines itself 
to the traditional approaches that use logarithmic probability plots and the t estimator 
developed by Sichel. 

The Fitting of a Lognormal Distribution 

In the late 1940s, the first 'probability' paper became available. This graph paper is used for 
the plotting of data value (generally on the vertical axis) versus the percentage of samples 
below the data value (horizontal axis). In the standard probability paper, the 'value' axis is 
arithmetic. The percentage axis is constructed in such a way that a set of samples from a 
normal (Gaussian) distribution produces a straight line. The data value corresponding to the 



50 per cent point is taken as an estimate of the mean of the distribution. The standard 
deviation can be calculated directly from the slope of the line – the usual procedure is to take 
the difference in value for the 84 and 16 per cent points and divide this by 2. 

There is no clear indication of the first use of probability paper in the mining industry, but 
this must have followed closely on the heels of its invention, since it was in common usage 
by the 1950s. For the lognormal distribution, the arithmetic value scale is replaced by a 
logarithmic scale.   In this way, a set of samples from a lognormal distribution will give a 
straight-line fit. The 50 per cent point is now the median, and the logarithmic variance can be 
determined from the slope of the line, as before. 

In general, the procedure would be something like this: 

  (1)  construct a histogram from the sample data; 

  (2)  calculate 'cumulative' frequencies, i.e. number of samples below a given data value; 

  (3)  calculate the percentage of samples below a given value; 

  (4)  plot 'data value' on the logarithmic scale and 'percentage of samples' on the probability 
scale; and 

  (5)  by eye, fit a straight line through the points. 

The judgement of whether the line 'fits' the points is a subjective one. However, experience 
has shown that there is seldom any ambiguity about the decision – it either fits or it does not. 
  The process can be refined by the application of a statistical test, such as the ᵡ2, to check the 
fit of the samples to the distribution. 

The Third Parameter 

Once probability plots came into common use, it soon became apparent that the lognormal 
distribution did not always fit the sample data. A common occurrence was a sharp downturn 
in the data at the lower end of the graph, giving significant deviation from the straight line. In 
1960, Krige introduced a third parameter – the additive constant – into the analysis. Instead 
of the sample value being plotted on the logarithmic scale, the value plotted was 'sample 
value + constant'. This has the effect of raising the downturn so that the line straightens out. 
The criterion for the 'best' value for the additive constant is that in which 'the plot of the 
points best resembles a straight line' (Krige, p. 7). The process of estimating the third 
parameter is not a simple one. The additive constant must be included in the data value before 

it is plotted on the logarithmic scale. This changes every point in the graph – not just those 
off the line.   Strictly, then, one should plot a graph for each possible value of the additive 
constant and then select that which gives the straightest' line. 

Rendu (p. 7) suggests an arithmetic means of arriving at the additive constant based on the 50 
per cent point and two complementary percentile points. Current usage favours the 16 and 84 
per cent points for this calculation. This drastically reduces the amount of calculation and 
plotting involved. However, Rendu notes that 'It is therefore important to check graphically 
that the cumulative distribution of x+β is lognormal' (where x is original sample value and β 
the constant). In other words, one still has to decide whether the line is straight when the third 



parameter is included in the analysis. If Rendu's formula 2.13 does not give a straight line, 
one must revert to trial-and-error methods or reject the three-parameter approach. 

The Digital Computer 

This process seems to be an ideal candidate for the special abilities of a digital computer. The 
criterion for the 'best' fit has been clearly stated as the straightest fine. The actual computation 
procedure is simple enough, but is extremely tedious.   The computer is the ideal tool to carry 
out this type of repetitive calculation swiftly and without error. 

The process can be summarized simply as follows: 

  (a)   choose an additive constant, 

  (b)   construct a probability plot, 

  (c)   fit a straight line through it, and 

  (d)   measure deviations from the line. 

This procedure can be repeated for many values of the additive constant in a fraction of the 
time it would take to tackle one value manually. The only numerical complication is in the 
construction of the 'probability' axis. Many algorithms are available for this. This author 
favours the use of JRSS Algorithm 111 by Beasley and Springer, which is a FORTRAN 
subroutine called PPND – 'Percentage Points of the Normal Distribution'. This routine 
provides the standard normal deviate associated with any given percentage of samples. 

There are, of course, many methods of fitting a straight line through a set of points. At 
Geostokos, we favour the standard least-squares approach, choosing to minimize the 
difference between the 'percentage of samples' and the 'percentage of lognormal distribution' 
below a given data value. In fact, this measure can be used at both stages: 

once an additive constant has been chosen, the best line minimizes the difference between 
observed percentage and expected percentage; 

for a set of additive constants, the best line is the one with the smallest minimum difference. 

In plainer language, the set of parameters that 'best resembles a straight line' is the set that 
produces the smallest differences between the observed percentage and the expected 
percentage as measured by the sum of squares of these differences. 

  

A Computer Program 

In our computer implementation of this method, we work on the assumption that the data 
really do come from a three-parameter lognormal distribution. This may sound trite, but few 
computer programs are written to argue with a user who is determined to apply an 
inappropriate analysis. 



The practical consequence of this assumption is that, if successive values are taken for the 
additive constant, the line will gradually straighten out until the correct value is reached and 
then start to curve again in the 'Opposite' direction; that is, there is a best-fit line somewhere. 
In practice, we have programmed our software to stop if the additive constant becomes larger 
than the largest sample value and a minimum has not been reached. This is an arbitrary (but 
sensible) stopping rule. 

Our program chooses a starting value for the additive constant, and successively raises this by 
increments until a minimum has been found and passed. To save unnecessary computation, a 
fairly large increment is chosen. This increment is then reduced, and the region around the 
supposed minimum is searched for a more precisely defined minimum. This process can be 
repeated until the required precision is reached. We have found that a starting increment 
equal to around one-tenth of the first histogram interval gives a satisfactory compromise 
between speed of operation and the number of repetitions required. 

Timings for this sort of procedure vary considerably.   A histogram with a large number of 
intervals and a high value additive constant will take the longest run time.   The example 
given as Figure 5 by Krige (p. 7) takes less than 10 seconds on a standard IBM PC without 
coprocessor. An example with 120 intervals and an additive constant half way through the 
range may take up to 2 or 3 minutes. 

Perhaps it is worth noting that, if one does not have enough samples to build a histogram, the 
above process works equally well on ungrouped sample data. 

A Statistical Approach 

The technique described above is the traditional approach and merely emulates on a computer 
what analysts would normally do by hand. The computer chooses successive additive 
constants and checks which one gives a set of points that most resembles a straight line. 

However, there are many other ways of trying to solve the same problem. For example, in the 
late 1960s Sichel's studied (at some length) generalized moment methods for moderate to 
large sets of samples. He pointed out that, for small sample sets from this sort of distribution, 
ordinary moment methods can be distinctly unstable. 

One statistical approach to the problem of fitting a three-parameter lognormal distribution to 
a set of sample data is briefly discussed here. Using exactly the same approach as the 
traditional one, the aim is to minimize the difference between the observed percentage of 
samples below a given value and that predicted by a distribution model. In fact, as described 
above, the sum of the squared differences is minimized. 

Now, one has a set of observed percentages and can specify the distribution model by giving 
values to the three parameters - mean, variance, and additive constant. This is the classic 
least-squares problem. The only difficulty is that the classic least-squares approach does not 
give a set of linear equations that can be solved for the 'best' values of the three parameters.   
Instead, it gives a set of equations that are non-linear. The non-linear least squares (NLLS) 
problem has been discussed fully elsewhere"," and is very simple to implement on a 
computer.   The application of the NLLS approach to the three-parameter lognormal fitting is 
described in Addendum 1. 



There are two practical implications in the application of the NLLS method. Firstly, this kind 
of 'iterative' method requires a 'starting point' – that is, one has to provide first guesses at the 
values of the parameters. Secondly, it can be seen in practice and proved in theory 
(MacDonald, personal communication) that the NLLS method tends to be less influenced by 
erratic values in the tail of the distribution and more by the whole shape of the curve. This is 
a distinct contrast to either moment methods or probability plotting. We have found a happy 
compromise in the use of probability plots to provide the initial estimates for the NLLS 
routine. 

The Additive Constant 

Krige has noted that the choice of additive constant seems to have little effect on the final 
estimate of the average value.   This is true when the average value is estimated directly from 
the probability plot or when NLLS is used. However, the logarithmic variance can be unduly 
influenced by a change in additive constant – by up to 50 per cent in some cases. In addition, 
if the constant chosen is used in a Sichel's t type of estimation, the average grade may also be 
affected, since the optimal estimator depends heavily on the logarithmic variance of the 
samples. 

Table I shows a set of 15 (simulated) samples from a three-parameter lognormal distribution 
with an additive constant of 100.   Table II shows the effect of feeding different additive 
constant values into a Sichel's t computation. One interesting feature of the results is that the 
logarithmic variance declines steadily as the additive constant rises.   The other point of 
interest is that, despite this feature, the estimated mean value stabilizes once the 'true' value of 
the additive constant has been reached.   Have we, perhaps, struck another empirical tool in 
deciding the value of the additive constant? 

In short, then, the choice of additive constant for small sets of samples could be crucial if a 
more 'objective' estimator of the average grade - say, Sichel's t - is to be used and if 
confidence levels are to be calculated. Although the estimator and (strangely enough) the 
lower confidence levels stabilize fairly quickly, the logarithmic variance and the confidence 
level change significantly with the choice of additive constant. This would also affect any 
later calculations on recovery or payability, since these depend almost exclusively on the 
logarithmic variance. 

Thus, the extra effort of obtaining 'good' estimates of the logarithmic variance will be repaid 
in more accurate confidence levels and pay limit calculations. 

Estimation of Maximum Likelihood 

The previous discussion covered two approaches to the fitting of a lognormal distribution to a 
set of sample data.   The use of probability paper to fit a straight line - either empirically or 
by Rendu's shortcut – is essentially an intuitive least-squares approach. The other method put 
forward for consideration was an iterative NLLS approach, requiring initial estimates for the 
parameters involved in the lognormal model. 

Almost forty years ago, Sichel, first put forward his method for the estimation of maximum 
likelihood for the average value of a lognormal distribution and for confidence limits 
associated with this estimator. 



The criterion of maximum likelihood is (in simple terms) a method of finding the model 
distribution from which samples are 'most likely' to have come. It can never be emphasized 
too much that measures of probability (like least squares) calculate the likelihood of samples 
coming from a given model population.   They do not calculate the probability that the model 
fits the data but rather that the data fit the model. This is not at all the same thing, especially 
when it comes to the evaluation of such concepts as confidence intervals. 

Sichel, then, evolved the theoretical background to an estimator of the average of the 
lognormal distribution and associated confidence levels on this estimator. This theory has 
been substantiated by almost forty years of practical use, the major developments over the 
years being updated and more accurate tables for the various factors. The production of 
Sichel's tables, specifically those given in the 1966 paper was programmed expertly by Vera 
Marting. However, no details on the computer algorithms or approximation techniques are 
given in the paper. 

The tables currently in use are those published by Wainstein in 1975, which have been copied 
and quoted in many other papers and textbooks (e.g. Rendu, David). Although Wainstein 
extensively described his computerization of the Sichel t approach, his quoted computer costs 
and timings were prohibitive and seem to have discouraged other workers from tackling the 
same problem. With timings such as 61 minutes to produce a single A(T) integration on an 
IBM mainframe, Wainstein needed to use approximation techniques to obtain his final tables 
for the Ψ factors. The computerization that is fully described here is a workable compromise 
between mathematical exactitude and response time on a microcomputer. The results can be 
shown to achieve an accuracy of 99,998 per cent for all the factors, provided that there are at 
least five samples in the data set. For four samples, the accuracy achieved was only 99,98 per 
cent. 

Sichel's t Estimator 

The mathematics of Sichel's maximum likelihood estimator are extensively documented in 
Sichel's own papers and by Wainstein. For completeness, the bare bones of the mathematics 
are given in Addendum 2. In this part of the paper, the discussion is couched in intuitive 
terms and slanted towards the implementation of this established estimation method on 
microcomputers. 

Sichel's t estimator was developed for a two-parameter lognormal distribution. This is 
discussed in detail in this section of the paper, with an indication at the conclusion of how the 
estimates should be adjusted in the three parameter case. Sichel's notation is used throughout, 
except where this conflicts with the notation (Krige's) established earlier in the paper. 

The first stage in this type of estimation is to take the logarithm of each sample value. For 
simplicity, the natural logarithm (loge or ln) is taken.   The use of logarithms to the base 10 
simply leads to the introduction of an unnecessary constant. The average of these logarithmic 
values is calculated (ybar), as is the sample variance (V).   It is emphasized that V is the 
sample variance since it is the average squared, deviation from the sample mean. This is the 
maximum likelihood estimator for the logarithmic variance; it is, however, a biased estimator 
for the logarithmic variance.   By tradition, then, V has always been used in Sichel estimation 
rather than the unbiased estimator (s2). 



Development of the likelihood theory reveals that the 'best' estimator of the average value of 
the lognormal distribution is the anti-logarithm of the logarithmic average multiplied by a 
factor that depends on the number of samples (n) and the logarithmic sample variance (V). 
This factor is referred to as γn(V) in all the literature. The mathematical expression for γn(V) is 
a summation of an infinite series of terms involving n and V. This presents few computation 
difficulties except for the usual ones of rounding error and stopping rules. 

The first problem concerns the number of terms actually to be summed, i.e. what is the 
approximation to infinity in this context? We use the simplistic approach. Once the next term 
to be added to the series becomes smaller than our 'precision' criterion, we stop. We have 
found that a figure of 0.000001 (10-6) is adequate to reproduce all the published figures. The 
use of smaller figures seems to have no effect on the calculations. 

The second problem, especially with microcomputers, is the possible rounding error 
introduced by the calculation of the individual terms in the summation. Three figures are 
raised to powers, and two factorial type expressions must be evaluated. We have taken the 
simple precaution of using a recurrence relationship to calculate the next term in the series 
from the previous one. The expression is given in Addendum 2. 

The execution time for the calculation of γn(V) is negligible, even on a microcomputer. We 
have not carried out any detailed timing runs for this factor. 

Confidence Levels 

The real computational difficulties are encountered in the evaluation of confidence levels for 
the Sichel's t estimator. Although the t estimator is the 'best' estimate for the true average 
value of the lognormal distribution, it is often vital to know just how accurate this estimator 
is. The traditional approach to this question has been the production of 'confidence levels'. 
These calculations give an idea of how 'close' the estimate could be to the true value.   This 
permits the association of a measure of confidence to (say) the payability of an area to be 
mined. 

The classical approach to the calculation of confidence levels is as follows: 

(1) establish what estimator to use for the parameter, 

(2) derive the probability distribution of that estimator, 

(3) specify a level of risk that is acceptable, 

(4) find the corresponding percentage point on the distribution of the estimator, and 

(5) measure how far this is from the 'true' (expected) value of the parameter. 

Sichel's papers detail the form of the estimator (described above) and derive the probability 
distribution theoretically. The problem is merely to program this on the computer. The 
mathematics is given in Addendum 2. The implementation is discussed here only in the 
simplest terms. 



The estimator (t) is a statistic calculated from a given number of sample values ( n). Another 
set of n samples would give a different set of values, which would yield a different t value. A 
hundred such sample sets would yield a hundred potentially different t values.   However, 
these t values would present some sort of predictable behaviour, because the distribution the 
samples come from is known and there are always the same number of samples. 
Mathematically, then, Sichel derived a formulation for the distribution that would be 
expected if lots of t statistics could be produced. In fact, the distribution he obtained was for a 
function of t that he denoted T (Addendum 2). Sichel calls this probability distribution of T 
values, A(T). 

 

The probability density function (p.d.f.), A(T), shows the distribution of possible T values 
with respect to the 'true' average value of a lognormal distribution for a given number of 
samples. The p.d.f. A(T) depends on two major factors: n, the number of samples used in the 
estimation, and σ2, the logarithmic variance of the lognormal distribution; that is, a different n 
will give a different shape to A(T)(Fig. 1). So will a different σ2 (Fig. 2). Here is the first real 
problem in the calculation of confidence levels for a Sichel's t estimator. One generally 
knows how many sample values one has.   However, very rarely does one know the true 
logarithmic variance of the whole distribution. 

Both Sichel and Wainstein mention this problem. Sichel states that the A(T) distributions are 
virtually identical in the region 0.3 < σ2 < 1.5 and suggests that the selection of σ2 = 0.7 is an 
acceptable compromise. Wainstein produces a table comparing the percentage points actually 
obtained if σ2 is assumed to be 0.7 when it is not. He concludes that the decrease in accuracy 
is negligible within the above range. Wainstein makes no recommendations as to what action 
to take if (say) σ2 = 3.0. Some simple comparisons on the resulting Ψ factors for σ2 = 0.7, 0.3, 
σ

2 = 1.5, and σ2 =n V/(n–1) are shown in Table III.  



 

Table III lists a subset of the usual range of V values and a fixed number of samples (10), and 
illustrates the differences for the upper 95 per cent confidence level. It can easily be seen that 
the Ψ factors change with the assumed value for the 'true' logarithmic variance. A smaller 
true variance leads to a smaller Ψ value. This makes some sense since, if the original values 
are less variable, the estimates of the mean should also be less variable.   A closer inspection 
of the values in Table III shows that, for small V (small observed variance), the differences 
between the columns are minor, amounting to 1 per cent at most. For 'usual' values of V, 
around 0.6, or 0.8, with σ2 = 0.3 instead of 0.7, the Ψ value is over 6 per cent lower; at σ2 = 
1.5 there is a similar discrepancy. The use of the 'best unbiased estimator' of σ2 (s2

) = n V/(n – 
1)) obviously gives around the same value.   For an observed sample variance of 1.5, the 
differences mount to between 12 and 13 per cent. At V= 2.0, there is a 12 per cent difference 
between σ2 = 0.7 and σ2 = 0.3. 

For σ2 = 1.5, the, difference is 16.5 per cent, and for σ2 = s2, 28 per cent. 

It would appear, then, that changes in the assumed value of the true logarithmic variance can 
affect the calculated Ψ factors by up to 30 per cent in situations that are hardly extreme. For 
the lower confidence levels, which are perhaps more important in practice, the discrepancies 
are not so high, although they are still significant. To assume a blanket value of 0.7 for the 
true variance when we provide tables for observed variances between 0.01 and 3 seems a 
little unrealistic. It is felt that this question of the assumed variance has been dismissed too 
lightly in the past and warrants further in-depth investigation. However, that is not within the 
scope of the present paper. 

Calculation of A(T) 

As stated above, the probability density function for T, A(T) , is a function of the number of 
samples used (n) and the true logarithmic variance (σ2). The value of A(T) for a specific value 
of T is an involved expression in T, n, and σ2, and is given in Addendum 2. In fact, it involves 



an integration of a complicated function over the range zero to infinity. The calculation of 
this function on a computer, then, depends on the numerical evaluation of this integral. 

There are many methods of numerical integration sometimes known as quadrature 
(Abramowitz and Stegun). In all these methods, the formula is evaluated at intervals over the 
range of integration. These values of the function are combined in a weighted average, which 
approximates the integral. Intuitively, the smaller the interval, the more accurate the 
numerical approximation. However, the smaller the interval, the longer the calculation time. 
One must decide, then, what interval achieves the necessary precision on the integration 
without making the calculation time prohibitive. 

In this particular integration, there is also the problem of when to stop integrating, i.e. what is 
the approximation to infinity. There are three decisions to be made, then: 

(a) what method of numerical integration to use, 

(b) what interval for discrete approximation to use, and 

(c) what approximation to infinity is sufficient. 

Although it would be possible to choose these factors based on strict mathematical criteria, 
we have chosen to do so empirically. We chose as our criterion those factors which produce a 
probability density function that is accurate to five figures (99,999 per cent). We feel that this 
is adequate for all normal usage. 

Abramowitz and Stegun (Section 25.4) give around three dozen different methods of 
numerical integration and their associated precisions. We experimented with five of these and 
found little difference between the final accuracies achieved. Finally we settled for the 
extended Simpson's Rule, which satisfied our operating criterion.  

The selection of an approximation interval is, of course, tied into the integration method 
chosen. We found that an interval of 0.010 was sufficient for n > 5. Some loss of precision 
was experienced for n = 4 (99,98 per cent) and more for n = 3 (99,64 per cent). However, we 
could not obtain any improvement on this by taking smaller intervals in the integration. This 
may be a reflection of the instability of the mathematics for n < 5, rather than computational 
problems! It was decided that an interval of 0.010 was adequate for normal usage, 0.005 
being used for further investigative purposes. 

Detailed investigation revealed that the number of intervals needed – or the range of 
integration – depends greatly on n. The higher the value of n, the lower the range of 
integration needed. We decided on a fixed range that would serve all n values. This means 
that more computation is carried out than is needed for large n values. However, we feel that 
the time saved by altering the range would be offset by testing for the range actually required. 
The final decision was to take the value 5.0 as our approximation to infinity. At an interval of 
0.010, this means 500 intervals. For an interval size of 0.005, we need 1,000 intervals. 

Our main timing runs were carried out on our in-house microcomputer, an Alpha Micro 1000 
machine. This system is approximately four years old, and was one of the first systems based 
on the M68000 16-bit chip. We use a FORTRAN 77 (full) compiler. However, the 
approaches described can be implemented in any high-level scientific language. All timings 



are 'real time' not CP time – that is, the actual subjective time taken to run the calculations on 
a one-user machine. 

Timings need to be split into two parts. There is an 'overhead' time in calculating the 
multiplicative factors at various intervals. This remains fairly constant at around 19 seconds 
for odd values of n, and 24 for even values. The difference is caused by the calculation of the 
T function in the overall constant (Addendum 2). Once the overhead calculations have been 
carried out, single values of A(T) can be calculated in under a second (for values in the tails), 
with some points taking upwards of 5 seconds (central values for n<10). 

In summary, we evaluate the probability density function of T using the Extended Simpson's 
Rule numerical integration method. We integrate over a range 0 to 5 using an interval of 
0.005 for our investigations. This gives better than 99,98 per cent for all n > 3. All of this 
evaluation was carried out with σ2 = 0.7. 

Evaluation of Confidence Levels 

We can now evaluate (and graph) the probability density function for the T statistic from a 
given number of samples. We can, therefore, investigate the likely difference between our 
estimator (or rather, this function of it) and the actual 'true' value for the average value over 
the study area.  

The principle of confidence intervals is one that is very easy to express mathematically, but a 
little more difficult to explain intuitively. Effectively, we wish to make a statement along the 
lines 'our best estimate for the average is .... but we can only be p per cent confident that the 
true value is above ....'. Without going into the lengthy ramifications, this reduces in practice 
to finding the value of T below which p per cent of the distribution lies, say Tp. 

Now, given a value of T, we can work out how much of the distribution is above it by 
integrating under the function A(T) . This is purely a repetition of our previous problem After 
extensive (empirical evaluation, we chose to use the simplest trapezoidal integration method: 
a range of [-20, 10] to approximate the actual range of ( –infinity, +infinity) for n > 5 and [-
40, 30] for n < 5; an interval size of 0.10 over the whole range. With these choices, a 
complete integration over the whole range takes 878 seconds for n = 5, 549 seconds for n 
=10, and 471 seconds for n = 20. 

For confidence levels, we have the reverse problem: what T corresponds to a given area under 
A(T) . Sichel gives no indication of how he solved this problem. Wainstein's approach was to 
evaluate the integral of A(T) for a set of specified T values. He then interpolated between 
these, using a parabolic curve-fitting technique. Wainstein himself says, "However, it must be 
emphasised that this method is not optimal". We have implemented a method that removes 
the approximations used by Wainstein and produces the Ψ factors to any desired level of 
precision. 

Our procedure is as follows: 

(a) select the interval size and approximation to infinity, 

(b) integrate over successive intervals until the next one would take us over p per cent, 



(c) change to one-tenth of the current interval size, and 

(d) repeat until the interval size has become smaller than the required precision. 

This procedure is illustrated in Fig. 3 and is as precise as one can get with a numerical 
technique. No real approximations are included in the process as we 'home in' on the correct 
value for Tp. 

It is a little difficult to give definitive computer timings for this process, since it depends on 
both n and p. Table IV gives a set of timings on the Alpha Micro for some possible values of 
both. These can be used as relative timings for other machines. These timings are for single 
confidence levels only. A value for σ2 of 0.7 has been used throughout. The timings (and 
costs) for producing confidence levels are significantly affected by different values of σ2. 
Some examples have been included in Table IV. 

 

A program can be written to order the percentage points and take advantage of the 
integrations already covered. This sort of approach was used to produce Table V, which is a 
complete table of γn(V) and Ψp factors for n = 10. This table requires 829 seconds to complete 
on the Alpha Micro. Extra lines can be added to the table at a marginal extra time of around 1 
second per line.  

In that case, the timings would be affected (severely) by the choice of values for σ2. If we 
chose to put σ2

 = n V/(n-1), for example, the timing for the same table is 18,929 seconds, i.e. 
over 5 hours. A full set of tables such as Table V can be obtained from the author. In those 
tables, V values are taken up to 3.0.  

Other Advantages of Computerization 

Traditionally, Sichel's t approach has been used to estimate the average value of a two- (or 
three) parameter lognormal distribution and associated confidence limits. Tables, published 
by Sichel and Wainstein, have eased this task by providing figures for specified numbers of 



samples (n) and logarithmic sample variances (V). Where the user had values that were not 
shown on the tables, linear interpolation was considered sufficient.  

One of the major advantages of computerization apart from the speed and reliability of its 
arithmetic (sic) -is that we obtain the correct result for any value of n and V. No interpolation 
is needed, since the integrals are evaluated for each particular case. Table VI shows some 
comparisons between linear interpolation and direct evaluation. We have chosen to compare 
the 'actual' Ψ factors when n = 8 with those obtained using linear interpolation between n = 5 
and n = 10. This example was inspired by the illustrative calculation in Rendu's book, which 
uses 8 samples with a calculated logarithmic variance of V =0.0445.  

Table VI is for the upper 95 per cent confidence limit only, and shows the percentage 
difference between the actual and the interpolated figure = 100 (actual – interpolated)/actual. 
The results are rather disturbing. For Rendu's example, interpolating between columns carries 
a penalty of over 3 per cent error. This seems a little disturbing. As the logarithmic variance 
rises, so does the error when linear interpolation is used. At the desired 0.7 level, the error has 
mounted to 24 per-cent. At V = 0.9, which is cited by Krige as the usual value, the error is 
over 30 per cent. This must cast some grave doubts on the use of the tables as quoted by 
Rendu, David, and others. This was one of the major factors in our decision to use a different 
layout (Table V) in presenting the Ψ factors. This kind of presentation makes it very tricky to 
interpolate between values for different n.  

Linear interpolation is also used when V is not exactly equal to one of the values given on the 
table. In Rendu's example, σ2 =0.0445. Checked against Table VI, interpolation between V = 
0.04 and V = 0.06 leads, at most, to a difference of 1 in the third decimal place, for all 
columns in the table. This, at least, is a little more reassuring.  

In short, the use of a computer to evaluate Sichel's t estimator and its associated confidence 
limits results in greater speed, arithmetic accuracy and, above all, the elimination of the 
approximations that are necessary when tables and graphs are used.  

Pay Value and Payability Calculations 

The third technique that is discussed in this paper is the method of calculating 'pay' and 
'percentage payability' values once the lognormal distribution - two- or three- parameter-has 
been established. In the estimation of ore reserves, it is generally acknowledged that material 
below some economic cutoff or 'pay value' will not be mined or included in the declared 
reserves for the mine. The two techniques discussed in the two previous sections are for the 
complete distribution and for the estimation of the parameters for the 'best' lognormal 
distribution. This section discusses briefly the results of applying one or more pay limits to 
the distribution, and hence to the mine area.  

It is perhaps worth noting that the problems of converting from a 'sample' distribution to a 
block or stope distribution are not covered. It is a well-documented fact that block and stope 
values tend to be less variable than those measured on relatively small samples. This will, of 
course, affect the calculation of the percentage payability and the average value of the ore. 
The calculation of block factors is not within the scope of this paper. However, the 
procedures described here can be applied to any lognormal distribution provided values for 
the three parameters can be provided: the average value of the whole distribution, the 
logarithmic variance, and the additive constant (if any).  



It is assumed that there are stable estimates for the parameters of the lognormal distribution, 
which has been derived from the samples. This is a complete distribution including material 
that will not be mined under normal circumstances. If a pay limit is applied to this model, all 
the material below the pay limit will be rejected as 'unpay', and only material above the pay 
limit will be added into the calculated reserve. The values of interest are the average value of 
the material that will be mined, and the proportion of the deposit that lies above the pay limit.  

There have been two main approaches to these calculations. In 1962, Krige produced a 
graphical representation between the four quantities: pay limit/mean value, pay value/mean 
value, logarithmic variance, and percentage payability. The definition of any two of these 
quantities permits the direct calculation of the other two. This graph is in widespread use in 
the industry and can be regarded as definitive.  

Other authors (e.g. David) have preferred to give the mathematical relationship and suggest 
that users calculate each result directly. In this approach, which is detailed in Addendum 3, 
the user must supply the parameters of the lognormal distribution and the pay limit to obtain 
the pay value and the payability. In addition to the mathematics, the user needs a table of the 
cumulative normal (Gaussian) distribution function. This is generally the first table in any set 
of statistical tables or textbook. To computerize this approach is the work of a moment, 
requiring only a routine for the normal function. Many algorithms are available for this 
function (e.g. Abramowitz and Stegun, p. 931). Algorithms such as 26.2.19 give up to seven 
significant figures in precision, in a range of six standard deviations on either side of the 
mean value.  

One advantage of the graphical approach over the simple calculation is that the user can (say) 
define the desired pay value and read off the pay limit that must be applied to reach this goal. 
Similarly, the user can define payability and obtain the relevant pay limit and pay value. The 
latter can be carried out by a program simply by reversing the mathematics and using an 
algorithm for the inverse of the normal distribution function – such as the PPND discussed in 
the first section of this paper. It is much more difficult to calculate the results starting with a 
desired pay value, since the mathematics is complicated by two normal inverses. The usual 
answer to this, in practice, is to calculate the results for several pay limits and 'home in' on the 
desired pay value.  

As far as timings are concerned, it is more efficient to use the (b) form of the mathematics 
given in Addendum 3. There is a very small overhead in the calculation of the logarithmic 
mean and in square-rooting the logarithmic variance. Apart from that, the timing costs should 
be constant per pay limit. On the Alpha Micro, single calculations of pay limits take around 
0.03 seconds each. On any IBM PC (without coprocessor) the results appear on the screen 
with no perceptible pause. The entire GRL20 graph can be recreated in around 6 seconds on 
the Alpha Micro excluding the physical plotting time (which will depend on the plotter used).  

The Additive Constant (Again) 

The first section of this paper discussed the estimation of the third parameter – the additive 
constant. Krige states that the estimation of the mean value is robust with regard to the 
additive constant. We confirmed this empirically with a particular set of sample values. We 
also found that the lower confidence limit was stable, but that the logarithmic variance and 
the upper confidence limit were not. It would seem, then, that the choice of additive constant, 
within reasonable bounds, does not affect the final estimate of average value or of a lower 



confidence level on this estimate. Some concern has to be shown about the effect on the 
upper confidence limits but, since these are rarely used in practice, the problem is not of 
paramount importance.  

However, we must accept that the estimate of the logarithmic variance changes considerably 
with the additive constant. As the constant rises, the logarithmic variance drops. In the 
calculation of pay limit/pay value/payability, the logarithmic variance is of great importance 
for there is not a single term in the calculation that does not depend on it. In the GRL20 graph 
there are separate lines for different variances. Perhaps it would be valuable to give an 
example of the effect of the choice of constant on the payability figures.  

Table II gives the estimated average and logarithmic variance calculated according to Sichel's 
t procedure on the set of data in Table I and assuming various additive constants. The, 
variances change from over 1.4 with zero constant to 0.25 with a constant of 200. These 
sample values were simulated from a distribution with an additive constant of 100; at that 
level, the logarithmic variance is estimated at 0.426. We chose a set of pay limits between 
300 and 1000 to apply to the distribution. The calculations were performed for additive 
constants of 0. 50, 100, 150, and 200, and the results are shown in Tables VII and VIII.  

The first thing shown by the tables is that the assumption of no additive constant has a much 
greater effect than the assumption of an erroneous one. For example, at a pay limit of 300, 
there is a discrepancy of around 330 in the pay value and 9 per cent in the payability, as 
compared with the 'correct' value of 100 for the third parameter. This gap widens as the pay 
limits rise. Our first conclusion must be that, if the values are three parameter lognormal, 
some value must be used for the additive constant.  

Closer inspection of Tables VII and VIII show that the percentage payability varies little with 
the additive constant. At most, the deviation from the 'expected' value is around 3 per cent, 
and this is for a low cutoff of 300. The more disturbing factor, perhaps, is that the mean value 
changes significantly. Taking additive constants ranging from one-half to twice the correct 
value, we find differences in the average value of 7 to 9 per cent.  

It would seem, then, that the effort of finding a good estimate of the third parameter – the 
additive constant will be repaid with a significant increase in the precision of the payability 
calculations.  

Conclusion 

The aim in this paper was to illustrate the implementation of some of the traditional methods 
of reserve estimation on today's microcomputers. The main advantages of this type of 
computing power are the low costs both in purchase and in operating – and the ease of 
accessibility to those with a minimum of computer expertise. All of the illustrative examples 
and conclusions reached in this paper were produced on an in-house Alpha Micro at no extra 
cost to the company. This machine runs at about the same speed as an IBM PC AT without a 
coprocessor. With the coprocessor, the AT runs about 2.75 times faster (Williams et al). 
Obviously, timings are faster on minicomputers such as a Vax system. However, costs tend to 
rise also, since these machines are multi-user and tend to have well-developed accounting 
packages. The major point in favour of using a PC, then, is the very fact that it is designed to 
be 'personal' - single-user, low-cost, friendly system.  



It has been shown that, for the most part, the techniques described in this paper present few 
problems in being converted to a computer form. Where decisions have to be made, e.g. on 
what approximations to accept, our approach has enabled us to evaluate many alternatives to 
make sure that the results really are optimum. We have found that the more traditional 'table 
and graph' approach can lead to some fairly major errors if not used with caution. We have 
also raised some questions that, we hope, will stimulate further consideration of some of the 
accepted approximations.  

Finally, perhaps the author should reveal the real purpose in submitting this paper. Since the 
use of computers became widespread in the mineral industry, there has been a certain amount 
of pressure to take advantage of this by the use of more mathematical, more sophisticated, 
more complex, more costly, and more erudite techniques for the estimation of reserves. One 
has only to look at the development of Matheronian Geostatistics over the last twenty years 
for ample illustration of this process. Presented as a simple objective mathematical 
formulation of Krige's empirical work in the early 1960s by Matheron, it blossomed to fill 
textbooks by the late 1970s (e.g. David) and has since branched into at least three opposing 
schools of thought promoting their own variations of Ordinary Kriging, Simple Kriging, 
Disjunctive Kriging, Multivariate Gaussian Kriging, Probability Kriging, Indicator Kriging, 
and so on ad infinitum. All of these techniques, of course, are impossible without computers 
and very difficult without the appropriate software.  

Although these methods are invaluable in their place, the more traditional proven methods 
have been overshadowed by the welter of theory, application, and controversy surrounding 
the newer techniques. It is time, perhaps, that the established methods be seen to resume their 
place as valuable weapons in the armoury of modern reserve estimation.  
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TABLES 

TABLE I 

A TEST SET OF DATA FOR THE I$FLUE$CE OF THE ADDITIVE CO$STA$T 

O$ VARIOUS PARAMETERS CALCULATED DURI$G A SICHEL'S t A$ALYSIS  

   10.05       50.64       124.60 

   183.53       185.63       279.78 

   299.92       308.07       422.94 

   542.88       573.18       584.20 

   750.38       811.24       828.54 

TABLE II 

THE I$FLUE$CE OF THE ADDITIVE CO$STA$T O$ SICHEL'S t ESTIMATOR 

A$D OTHER PARAMETERS 

Additive       Estimated       Logarithmic       Lower       Upper  

constant       average       variance       95% Pt       0.95% Pt 

   0       500.7       1.422       300.5       1258.6  

   10       460.9       1.088       294.4       993.7  

   20       443.3       0.909       292.7       882.9  

   30       432.8       0.790       292.1       818.8  

   40       426.0       0.702       292.0       776.4  

   50       421.1       0.633       292.1       745.7  

   60       417.4       0.577       292.4       722.4  

   70       414.6       0.531       292.6       704.0  

   80       412.2       0.491       292.9       689.1  

   90       410.4       0.456       293.2       676.7  

   100       408.9       0.426       293.5       666.2  

   110       407.6       0.400       293.8       657.3  

   120       406.5       0.376       294.0       649.5  

   130       405.5       0.355       294.3       642.7  

   140       404.7       0.336       294.5       636.8  

   150       404.0       0.318       294.7       631.4  

   160       403.4       0.303       294.9       626.6  

   170       402.8       0.288       295.1       622.4  

   180       402.3       0.275       295.3       618.5  

   190       401.9       0.262       295.5       614.9  

   200       401.5       0.251       295.6       611.7  

B 



TABLE III 

Ψ FACTORS FOR SICHEL'S t ESTIMATIO$ FOR 10 SAMPLE VALUES AT 95% 

CO$FIDE$CE  

   V       σ2 = 0.7       σ2 = 0.3       σ2 = 1.5       σ2 = nV/(n-1) 

   0.01       1.081       1.075       1.090       1.070  

   0.10       1.292       1.268       1.325       1.251  

   0.20       1.455       1.415       1.508       1.405  

   0.40       1.754       1.684       1.850       1.713  

   0.60       2.066       1.962       2.211       2.059  

   0.80       2.410       2.265       2.614       2.465  

   1.00       2.798       2.604       3.074       2.951  

   1.50       4.033       3.667       4.565       4.658  

   2.00       5.803       5.163       6.760       7.453  

TABLE IV 

TIMI$G I$ SECO$DS FOR SI$GLE CO$FIDE$CE LEVELS CALCULATED FOR 

VARIOUS VALUES OF n A$D p  

   Number of       Log variance    
   Percentage 
points  

   samples       σ2       p=2.5%       p=5%       p= 10% 

   5       0.3             61  
 

   5       0.7       93       122       137  

   5       1.5       138       177       225  

   10       0.3             71  
 

   10       0.7       126       131       157  

   10       1.5       201       209       272  

   15       0.3             63  
 

   15       0.7       119       136       134  

   15       1.5       211       221       239  

   20       0.3             62  
 

   20       0.7       128       142       145  

   20       1.5       240       242       242  

 

  



TABLE V Ψ FACTORS FOR SICHEL'S t ESTIMATIO$ FOR 10 SAMPLE VALUES 

ASSUMI$G σ
2
 = 0.7  

                  Percentage points  

V γn(V) 1 2.5 5 10 50 90 95 97.5 99 

0.01 1.0050 0.933 0.944 0.952 0.962 1.001 1.059 1.081 1.104 1.135 

0.02 1.0100 0.907 0.921 0.933 0.947 1.002 1.085 1.117 1.151 1.197 

0.04 1.0202 0.871 0.890 0.907 0.926 1.003 1.123 1.172 1.222 1.292 

0.06 1.0304 0.844 0.868 0.887 0.910 1.005 1.154 1.216 1.280 1.371 

0.08 1.0407 0.822 0.849 0.871 0.897 1.006 1.182 1.256 1.333 1.444 

0.10 1.0510 0.803 0.832 0.856 0.885 1.007 1.208 1.292 1.382 1.511 

0.12 1.0615 0.786 0.817 0.844 0.875 1.009 1.231 1.327 1.428 1.577 

0.14 1.0720 0.771 0.804 0.832 0.866 1.010 1.254 1.360 1.473 1.64 

0.16 1.0826 0.756 0.792 0.821 0.857 1.012 1.276 1.392 1.517 1.702 

0.18 1.0934 0.743 0.780 0.811 0.849 1.013 1.298 1.424 1.560 1.764 

0.20 1.1042 0.731 0.769 0.802 0.841 1.015 1.319 1.455 1.603 1.825 

0.30 1.1595 0.678 0.723 0.762 0.809 1.022 1.420 1.605 1.812 2.132 

0.40 1.2171 0.635 0.685 0.728 0.781 1.030 1.518 1.754 2.025 2.453 

0.50 1.2770 0.598 0.652 0.699 0.758 1.039 1.617 1.907 2.246 2.796 

0.60 1.3394 0.565 0.623 0.674 0.737 1.049 1.718 2.066 2.480 3.168 

0.70 1.4044 0.537 0.597 0.651 0.718 1.059 1.823 2.234 2.731 3.574 

0.80 1.4719 0.510 0.573 0.630 0.701 1.070 1.932 2.410 3.000 4.021 

0.90 1.5420 0.486 0.551 0.610 0.685 1.081 2.047 2.598 3.290 4.514 

1.00 1.6150 0.464 0.531 0.592 0.671 1.093 2.167 2.798 3.604 5.058 

1.10 1.6908 0.444 0.512 0.575 0.657 1.106 2.294 3.012 3.945 5.662 

1.20 1.7695 0.425 0.495 0.560 0.644 1.120 2.427 3.241 4.315 6.331 

1.30 1.8515 0.408 0.478 0.545 0.633 1.134 2.569 3.486 4.717 7.073 

1.40 1.9365 0.391 0.463 0.531 0.621 1.149 2.718 3.750 5.155 7.898 

1.50 2.0248 0.376 0.449 0.518 0.611 1.165 2.877 4.033 5.633 8.815 

1.60 2.1164 0.362 0.435 0.506 0.601 1.182 3.045 4.337 6.154 9.834 

1.70 2.2116 0.348 0.423 0.495 0.592 1.200 3.224 4.664 6.722 10.968 

1.80 2.3194 0.336 0.411 0.484 0.584 1.218 3.413 5.016 7.341 12.231 

1.90 2.4128 0.324 0.399 0.474 0.576 1.238 3.615 5.395 8.018 13.636 

2.00 2.5192 0.313 0.389 0.464 0.568 1.258 3.829 5.803 8.758 15.200 

 

  



TABLE VI 

Ψ FACTORS FOR SICHEL'S t ESTIMATIO$ FOR UPPER 95% CO$FIDE$CE 

ASSUMI$G σ
2
 = 0,7  

                        n=8    Difference 

   V       n=5       n=10       n=8    Interpolated       %  

   0.01       1.165       1.081       1.099       1.115       1.43  

   0.02       1.243       1.117       1.144       1.167       2.08  

   0.04       1.364       1.172       1.211       1.248       3.07  

   0.0445       1.388       1.182       1.225       1.265       3.26  

   0.06       1.467       1.216       1.267       1.316       3.89  

   0.10       1.653       1.292       1.364       1.437       5.32  

   0.20       2.088       1.455       1.575       1.708       8.46  

   0.50       3.568       1.907       2.189       2.571       17.48  

   1.00       7.618       2.798       3.491       4.726       35.40  

   1.50       15.601       4.033       5.446       8.660       59.03  

   2.00       31.473       5.803       8.472       16.071       89.69  

   3.00       124.149       12.142       20.641       56.945       175.88  

TABLE VII 

COMPARISO$ OF PAY VALUES WHE$ DIFFERE$T ADDITIVE CO$STA$TS 

ARE ASSUMED  

         Additive constant  

   Pay limit       0       50       90       100       110       150       200  

   300       978       699       652       645       639       619       605  

   400       1148       818       759       749       741       716       697  

   500       1316       938       869       858       848       818       794  

   600       1480       1059       981       968       957       922       894  

   700       1642       1181       1094       1079       1067       1028       996  

   800       1802       1303       1207       1192       1178       1135       1100 

   900       1961       1425       1322       1304       1290       1243       1204 

   1000       2118       1547       1436       1417       1401       1351       1310 

 

  



TABLE VIII 

COMPARISO$ OF PAYABILITY VALUES WHE$ DIFFERE$T ADDITIVE 

CO$STA$TS ARE ASSUMED  

         Additive constant  

   Pay limit       0       50       90       100       110       150       200 

   300       43       49       51       52       52       53       55  

   400       34       37       38       38       38       39       40  

   500       28       28       28       28       28       29       29  

   600       23       21       21       21       21       21       21  

   700       19       16       16       15       15       15       15  

   800       16       13       12       11       11       11       10  

   900       14       10       9       9       8       8       7  

   1000       11       8       7       7       6       6       5  
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