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SYNOPSIS

This paper reviews some of the traditional methods of reserves estimation based on
lognormal distribution with or without an additive constant. In the rush to computerize mine
planning and grade control generally, proven estimation methods, such as Sichel's z, seem to
have been overlooked.

By use of a personal microcomputer, the traditional methods were investigated thoroughly,
the results being tested against existing tables and figures.

The fitting of a lognormal distribution, including estimation of the additive constant, is
discussed, and the calculation of Sichel's ¢ estimator and its associated confidence limits is
described in detail. Payability calculations for a lognormal distribution are also covered
briefly.

The advantages of personal computers, particularly speed and ease of use, are emphasized.
This low-cost approach permits detailed investigation of some of the assumptions and
approximations inherent in the established methods of calculation. Several disturbing
discrepancies are revealed in various factors, and some generalized statements made by
previous authors are found to be over-simplistic.

Full details are given of acceptable approximations and computer algorithms, and concern is
expressed over the possible loss of proven methods under the welter of new, sophisticated
computer software.

Introduction

The development and availability of personal computer power over the past few years have
been phenomenal. The proliferation of manufacturers, operating systems, suppliers, and
packages leaves the potential user breathless and (sometimes) bewildered. Whatever the
choice of hardware the trend worldwide seems to be away from the giant mainframe
computer towards the minicomputer and microcomputer.

In this day of the 'personal computer on every desk’, perhaps it is time to re-appraise some of
the techniques that are traditionally carried out with pencil, calculator, and definitive tables.
These methods, which have proved their value over any years of operation, can be emulated
on computers of any size. Why, one asks, has this not been done?



The main resistance to computerization seems to have been twofold. The inaccessibility and
sheer cost of calculating (say) a Sichel's ¢ estimator on a mainframe has been a major
discouraging factor. Secondly, the need to acquire considerable computer expertise before
being able to operate such systems persuaded all but a dedicated few to stay with the tried
and trusted calculation methods. The advent of personal computers and the benefits of 'user
friendly' software have removed both of these problems.

This paper discusses three of the typical tasks undertaken at various stages of reserve
estimation:

((a) the determination of lognormality of sample values and the possible choice of an
'additive constant' for the three-parameter lognormal;

((b) the calculation of Sichel's t estimator and associated confidence levels for two- or
three-parameter lognormals; and

(c) the calculation of pay limit/pay value/percentage payability, which is generally
undertaken with the use of such graphs as Krige's GRL20.

The purpose of this paper is simply to discuss the implementation of the traditional practices
on a digital computer, as has been done at Geostokos, London. Some advances in numerical
techniques will be presented, but in all cases the underlying theory remains the same as that

which has been proved in practice over the past forty years.

The Lognormal Distribution

All the tasks described above relate to the application of the lognormal distribution to
sampling and estimation problems. Traditionally, samples are assumed to come from a
lognormal type of distribution, sometimes modified by the introduction of a third parameter —
the 'additive constant'. The efficacy of this approach in practice has been proved time and
time again, particularly in its application to the problems of the Witwatersrand gold reefs.
Other minerals too uranium, for example — have been found to follow the three-parameter
lognormal. This has enabled workers to produce more reliable estimates for grades and
tonnages in these situations.

A typical approach to an estimation problem, then, would be to estimate values for the
parameters associated with the relevant lognormal distribution and then to use these values to
carry out payability calculations for the study area. The values that need to be estimated are
the additive constant (if any), the average value, and the logarithmic variance of the
distribution. Several methods are available for this calculation, but this paper confines itself
to the traditional approaches that use logarithmic probability plots and the ¢ estimator
developed by Sichel.

The Fitting of a Lognormal Distribution

In the late 1940s, the first 'probability’ paper became available. This graph paper is used for
the plotting of data value (generally on the vertical axis) versus the percentage of samples
below the data value (horizontal axis). In the standard probability paper, the 'value' axis is
arithmetic. The percentage axis is constructed in such a way that a set of samples from a
normal (Gaussian) distribution produces a straight line. The data value corresponding to the



50 per cent point is taken as an estimate of the mean of the distribution. The standard
deviation can be calculated directly from the slope of the line — the usual procedure is to take
the difference in value for the 84 and 16 per cent points and divide this by 2.

There is no clear indication of the first use of probability paper in the mining industry, but
this must have followed closely on the heels of its invention, since it was in common usage
by the 1950s. For the lognormal distribution, the arithmetic value scale is replaced by a
logarithmic scale. In this way, a set of samples from a lognormal distribution will give a
straight-line fit. The 50 per cent point is now the median, and the logarithmic variance can be
determined from the slope of the line, as before.

In general, the procedure would be something like this:
(1) construct a histogram from the sample data;
(2) calculate 'cumulative' frequencies, i.e. number of samples below a given data value;
(3) calculate the percentage of samples below a given value;

(4) plot 'data value' on the logarithmic scale and 'percentage of samples' on the probability
scale; and

(5) by eye, fit a straight line through the points.

The judgement of whether the line 'fits' the points is a subjective one. However, experience
has shown that there is seldom any ambiguity about the decision — it either fits or it does not.

The process can be refined by the application of a statistical test, such as the %, to check the
fit of the samples to the distribution.

The Third Parameter

Once probability plots came into common use, it soon became apparent that the lognormal
distribution did not always fit the sample data. A common occurrence was a sharp downturn
in the data at the lower end of the graph, giving significant deviation from the straight line. In
1960, Krige introduced a third parameter — the additive constant — into the analysis. Instead
of the sample value being plotted on the logarithmic scale, the value plotted was 'sample
value + constant'. This has the effect of raising the downturn so that the line straightens out.
The criterion for the 'best' value for the additive constant is that in which 'the plot of the
points best resembles a straight line' (Krige, p. 7). The process of estimating the third
parameter is not a simple one. The additive constant must be included in the data value before
it is plotted on the logarithmic scale. This changes every point in the graph — not just those
off the line. Strictly, then, one should plot a graph for each possible value of the additive
constant and then select that which gives the straightest' line.

Rendu (p. 7) suggests an arithmetic means of arriving at the additive constant based on the 50
per cent point and two complementary percentile points. Current usage favours the 16 and 84
per cent points for this calculation. This drastically reduces the amount of calculation and
plotting involved. However, Rendu notes that 'It is therefore important to check graphically
that the cumulative distribution of x+f is lognormal' (where x is original sample value and {3
the constant). In other words, one still has to decide whether the line is straight when the third



parameter is included in the analysis. If Rendu's formula 2.13 does not give a straight line,
one must revert to trial-and-error methods or reject the three-parameter approach.

The Digital Computer

This process seems to be an ideal candidate for the special abilities of a digital computer. The
criterion for the 'best' fit has been clearly stated as the straightest fine. The actual computation
procedure is simple enough, but is extremely tedious. The computer is the ideal tool to carry
out this type of repetitive calculation swiftly and without error.

The process can be summarized simply as follows:
(a) choose an additive constant,
(b) construct a probability plot,
(c) fit a straight line through it, and
(d) measure deviations from the line.

This procedure can be repeated for many values of the additive constant in a fraction of the
time it would take to tackle one value manually. The only numerical complication is in the
construction of the 'probability' axis. Many algorithms are available for this. This author
favours the use of JRSS Algorithm 111 by Beasley and Springer, which is a FORTRAN
subroutine called PPND — 'Percentage Points of the Normal Distribution'. This routine
provides the standard normal deviate associated with any given percentage of samples.

There are, of course, many methods of fitting a straight line through a set of points. At
Geostokos, we favour the standard least-squares approach, choosing to minimize the
difference between the 'percentage of samples' and the 'percentage of lognormal distribution'
below a given data value. In fact, this measure can be used at both stages:

once an additive constant has been chosen, the best line minimizes the difference between
observed percentage and expected percentage;

for a set of additive constants, the best line is the one with the smallest minimum difference.

In plainer language, the set of parameters that 'best resembles a straight line' is the set that
produces the smallest differences between the observed percentage and the expected
percentage as measured by the sum of squares of these differences.

A Computer Program

In our computer implementation of this method, we work on the assumption that the data
really do come from a three-parameter lognormal distribution. This may sound trite, but few
computer programs are written to argue with a user who is determined to apply an
inappropriate analysis.



The practical consequence of this assumption is that, if successive values are taken for the
additive constant, the line will gradually straighten out until the correct value is reached and
then start to curve again in the 'Opposite' direction; that is, there is a best-fit line somewhere.
In practice, we have programmed our software to stop if the additive constant becomes larger
than the largest sample value and a minimum has not been reached. This is an arbitrary (but
sensible) stopping rule.

Our program chooses a starting value for the additive constant, and successively raises this by
increments until a minimum has been found and passed. To save unnecessary computation, a
fairly large increment is chosen. This increment is then reduced, and the region around the
supposed minimum is searched for a more precisely defined minimum. This process can be
repeated until the required precision is reached. We have found that a starting increment
equal to around one-tenth of the first histogram interval gives a satisfactory compromise
between speed of operation and the number of repetitions required.

Timings for this sort of procedure vary considerably. A histogram with a large number of
intervals and a high value additive constant will take the longest run time. The example
given as Figure 5 by Krige (p. 7) takes less than 10 seconds on a standard IBM PC without
coprocessor. An example with 120 intervals and an additive constant half way through the
range may take up to 2 or 3 minutes.

Perhaps it is worth noting that, if one does not have enough samples to build a histogram, the
above process works equally well on ungrouped sample data.

A Statistical Approach

The technique described above is the traditional approach and merely emulates on a computer
what analysts would normally do by hand. The computer chooses successive additive
constants and checks which one gives a set of points that most resembles a straight line.

However, there are many other ways of trying to solve the same problem. For example, in the
late 1960s Sichel's studied (at some length) generalized moment methods for moderate to
large sets of samples. He pointed out that, for small sample sets from this sort of distribution,
ordinary moment methods can be distinctly unstable.

One statistical approach to the problem of fitting a three-parameter lognormal distribution to
a set of sample data is briefly discussed here. Using exactly the same approach as the
traditional one, the aim is to minimize the difference between the observed percentage of
samples below a given value and that predicted by a distribution model. In fact, as described
above, the sum of the squared differences is minimized.

Now, one has a set of observed percentages and can specify the distribution model by giving
values to the three parameters - mean, variance, and additive constant. This is the classic
least-squares problem. The only difficulty is that the classic least-squares approach does not
give a set of /inear equations that can be solved for the 'best' values of the three parameters.
Instead, it gives a set of equations that are non-linear. The non-linear least squares (NLLS)
problem has been discussed fully elsewhere"," and is very simple to implement on a
computer. The application of the NLLS approach to the three-parameter lognormal fitting is

described in Addendum 1.



There are two practical implications in the application of the NLLS method. Firstly, this kind
of 'iterative' method requires a 'starting point' — that is, one has to provide first guesses at the
values of the parameters. Secondly, it can be seen in practice and proved in theory
(MacDonald, personal communication) that the NLLS method tends to be less influenced by
erratic values in the tail of the distribution and more by the whole shape of the curve. This is
a distinct contrast to either moment methods or probability plotting. We have found a happy
compromise in the use of probability plots to provide the initial estimates for the NLLS
routine.

The Additive Constant

Krige has noted that the choice of additive constant seems to have little effect on the final
estimate of the average value. This is true when the average value is estimated directly from
the probability plot or when NLLS is used. However, the logarithmic variance can be unduly
influenced by a change in additive constant — by up to 50 per cent in some cases. In addition,
if the constant chosen is used in a Sichel's  type of estimation, the average grade may also be
affected, since the optimal estimator depends heavily on the logarithmic variance of the
samples.

Table I shows a set of 15 (simulated) samples from a three-parameter lognormal distribution
with an additive constant of 100. Table II shows the effect of feeding different additive
constant values into a Sichel's # computation. One interesting feature of the results is that the
logarithmic variance declines steadily as the additive constant rises. The other point of
interest is that, despite this feature, the estimated mean value stabilizes once the 'true' value of
the additive constant has been reached. Have we, perhaps, struck another empirical tool in
deciding the value of the additive constant?

In short, then, the choice of additive constant for small sets of samples could be crucial if a
more 'objective' estimator of the average grade - say, Sichel's ¢ - is to be used and if
confidence levels are to be calculated. Although the estimator and (strangely enough) the
lower confidence levels stabilize fairly quickly, the logarithmic variance and the confidence
level change significantly with the choice of additive constant. This would also affect any
later calculations on recovery or payability, since these depend almost exclusively on the
logarithmic variance.

Thus, the extra effort of obtaining 'good' estimates of the logarithmic variance will be repaid
in more accurate confidence levels and pay limit calculations.

Estimation of Maximum Likelihood

The previous discussion covered two approaches to the fitting of a lognormal distribution to a
set of sample data. The use of probability paper to fit a straight line - either empirically or
by Rendu's shortcut — is essentially an intuitive least-squares approach. The other method put
forward for consideration was an iterative NLLS approach, requiring initial estimates for the
parameters involved in the lognormal model.

Almost forty years ago, Sichel, first put forward his method for the estimation of maximum
likelihood for the average value of a lognormal distribution and for confidence limits
associated with this estimator.



The criterion of maximum likelihood is (in simple terms) a method of finding the model
distribution from which samples are 'most likely' to have come. It can never be emphasized
too much that measures of probability (like least squares) calculate the likelihood of samples
coming from a given model population. They do not calculate the probability that the model
fits the data but rather that the data fit the model. This is not at all the same thing, especially
when it comes to the evaluation of such concepts as confidence intervals.

Sichel, then, evolved the theoretical background to an estimator of the average of the
lognormal distribution and associated confidence levels on this estimator. This theory has
been substantiated by almost forty years of practical use, the major developments over the
years being updated and more accurate tables for the various factors. The production of
Sichel's tables, specifically those given in the 1966 paper was programmed expertly by Vera
Marting. However, no details on the computer algorithms or approximation techniques are
given in the paper.

The tables currently in use are those published by Wainstein in 1975, which have been copied
and quoted in many other papers and textbooks (e.g. Rendu, David). Although Wainstein
extensively described his computerization of the Sichel ¢ approach, his quoted computer costs
and timings were prohibitive and seem to have discouraged other workers from tackling the
same problem. With timings such as 61 minutes to produce a single 4(7) integration on an
IBM mainframe, Wainstein needed to use approximation techniques to obtain his final tables
for the V¥ factors. The computerization that is fully described here is a workable compromise
between mathematical exactitude and response time on a microcomputer. The results can be
shown to achieve an accuracy of 99,998 per cent for all the factors, provided that there are at
least five samples in the data set. For four samples, the accuracy achieved was only 99,98 per
cent.

Sichel's # Estimator

The mathematics of Sichel's maximum likelihood estimator are extensively documented in
Sichel's own papers and by Wainstein. For completeness, the bare bones of the mathematics
are given in Addendum 2. In this part of the paper, the discussion is couched in intuitive
terms and slanted towards the implementation of this established estimation method on
microcomputers.

Sichel's ¢ estimator was developed for a two-parameter lognormal distribution. This is
discussed in detail in this section of the paper, with an indication at the conclusion of how the
estimates should be adjusted in the three parameter case. Sichel's notation is used throughout,
except where this conflicts with the notation (Krige's) established earlier in the paper.

The first stage in this type of estimation is to take the logarithm of each sample value. For
simplicity, the natural logarithm (log. or In) is taken. The use of logarithms to the base 10
simply leads to the introduction of an unnecessary constant. The average of these logarithmic
values is calculated (ybar), as is the sample variance (V). It is emphasized that J'is the
sample variance since it is the average squared, deviation from the sample mean. This is the
maximum likelihood estimator for the logarithmic variance; it is, however, a biased estimator
for the logarithmic variance. By tradition, then, J has always been used in Sichel estimation
rather than the unbiased estimator (s%).



Development of the likelihood theory reveals that the 'best' estimator of the average value of
the lognormal distribution is the anti-logarithm of the logarithmic average multiplied by a
factor that depends on the number of samples (7) and the logarithmic sample variance (V).
This factor is referred to as y,(¥) in all the literature. The mathematical expression for y,(V) is
a summation of an infinite series of terms involving »n and V. This presents few computation
difficulties except for the usual ones of rounding error and stopping rules.

The first problem concerns the number of terms actually to be summed, i.e. what is the
approximation to infinity in this context? We use the simplistic approach. Once the next term
to be added to the series becomes smaller than our 'precision’ criterion, we stop. We have
found that a figure of 0.000001 (10°) is adequate to reproduce all the published figures. The
use of smaller figures seems to have no effect on the calculations.

The second problem, especially with microcomputers, is the possible rounding error
introduced by the calculation of the individual terms in the summation. Three figures are
raised to powers, and two factorial type expressions must be evaluated. We have taken the
simple precaution of using a recurrence relationship to calculate the next term in the series
from the previous one. The expression is given in Addendum 2.

The execution time for the calculation of y,(¥) is negligible, even on a microcomputer. We
have not carried out any detailed timing runs for this factor.

Confidence Levels

The real computational difficulties are encountered in the evaluation of confidence levels for
the Sichel's ¢ estimator. Although the ¢ estimator is the 'best' estimate for the true average
value of the lognormal distribution, it is often vital to know just how accurate this estimator
is. The traditional approach to this question has been the production of 'confidence levels'.
These calculations give an idea of how 'close' the estimate could be to the true value. This
permits the association of a measure of confidence to (say) the payability of an area to be
mined.

The classical approach to the calculation of confidence levels is as follows:

(1) establish what estimator to use for the parameter,

(2) derive the probability distribution of that estimator,

(3) specify a level of risk that is acceptable,

(4) find the corresponding percentage point on the distribution of the estimator, and

(5) measure how far this is from the 'true' (expected) value of the parameter.

Sichel's papers detail the form of the estimator (described above) and derive the probability
distribution theoretically. The problem is merely to program this on the computer. The

mathematics is given in Addendum 2. The implementation is discussed here only in the
simplest terms.



The estimator (¢) is a statistic calculated from a given number of sample values ( 7). Another
set of n samples would give a different set of values, which would yield a different ¢ value. A
hundred such sample sets would yield a hundred potentially different ¢ values. However,
these ¢ values would present some sort of predictable behaviour, because the distribution the
samples come from is known and there are always the same number of samples.
Mathematically, then, Sichel derived a formulation for the distribution that would be
expected if lots of 7 statistics could be produced. In fact, the distribution he obtained was for a
function of ¢ that he denoted 7 (Addendum 2). Sichel calls this probability distribution of 7
values, A(T).
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The probability density function (p.d.f.), A(T), shows the distribution of possible 7 values
with respect to the 'true' average value of a lognormal distribution for a given number of
samples. The p.d.f. 4(T) depends on two major factors: n, the number of samples used in the
estimation, and 02, the logarithmic variance of the lognormal distribution; that is, a different n
will give a different shape to A(T)(Fig. 1). So will a different ¢° (Fig. 2). Here is the first real
problem in the calculation of confidence levels for a Sichel's ¢ estimator. One generally
knows how many sample values one has. However, very rarely does one know the true
logarithmic variance of the whole distribution.

Both Sichel and Wainstein mention this problem. Sichel states that the 4(7) distributions are
virtually identical in the region 0.3 < o < 1.5 and suggests that the selection of o° = 0.7 is an
acceptable compromise. Wainstein produces a table comparing the percentage points actually
obtained if ¢ is assumed to be 0.7 when it is not. He concludes that the decrease in accuracy
is negligible within the above range. Wainstein makes no recommendations as to what action
to take if (say) o” = 3.0. Some simple comparisons on the resulting ¥ factors for o = 0.7, 0.3,
o’ = 1.5, and o =n V/(n—1I) are shown in Table III.
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Table III lists a subset of the usual range of V values and a fixed number of samples (10), and
illustrates the differences for the upper 95 per cent confidence level. It can easily be seen that
the W factors change with the assumed value for the 'true' logarithmic variance. A smaller
true variance leads to a smaller ¥ value. This makes some sense since, if the original values
are less variable, the estimates of the mean should also be less variable. A closer inspection
of the values in Table III shows that, for small V" (small observed variance), the differences
between the columns are minor, amounting to 1 per cent at most. For 'usual' values of V,
around 0.6, or 0.8, with o = 0.3 instead of 0.7, the ¥ value is over 6 per cent lower; at &=
1.5 there is a similar discrepancy. The use of the 'best unbiased estimator' of o° (5°) =n V/(n —
1)) obviously gives around the same value. For an observed sample variance of 1.5, the
differences mount to between 12 and 13 per cent. At V= 2.0, there is a 12 per cent difference
between o” = 0.7 and o” = 0.3.

For o° = 1.5, the, difference is 16.5 per cent, and for o = s2, 28 per cent.

It would appear, then, that changes in the assumed value of the true logarithmic variance can
affect the calculated W factors by up to 30 per cent in situations that are hardly extreme. For
the lower confidence levels, which are perhaps more important in practice, the discrepancies
are not so high, although they are still significant. To assume a blanket value of 0.7 for the
true variance when we provide tables for observed variances between 0.01 and 3 seems a
little unrealistic. It is felt that this question of the assumed variance has been dismissed too
lightly in the past and warrants further in-depth investigation. However, that is not within the
scope of the present paper.

Calculation of A(T)
As stated above, the probability density function for 7, A(T) , is a function of the number of

samples used (n) and the true logarithmic variance (¢°). The value of A(T) for a specific value
of T'is an involved expression in 7, n, and ¢°, and is given in Addendum 2. In fact, it involves



an integration of a complicated function over the range zero to infinity. The calculation of
this function on a computer, then, depends on the numerical evaluation of this integral.

There are many methods of numerical integration sometimes known as quadrature
(Abramowitz and Stegun). In all these methods, the formula is evaluated at intervals over the
range of integration. These values of the function are combined in a weighted average, which
approximates the integral. Intuitively, the smaller the interval, the more accurate the
numerical approximation. However, the smaller the interval, the longer the calculation time.
One must decide, then, what interval achieves the necessary precision on the integration
without making the calculation time prohibitive.

In this particular integration, there is also the problem of when to stop integrating, i.e. what is
the approximation to infinity. There are three decisions to be made, then:

(a) what method of numerical integration to use,
(b) what interval for discrete approximation to use, and
(c) what approximation to infinity is sufficient.

Although it would be possible to choose these factors based on strict mathematical criteria,
we have chosen to do so empirically. We chose as our criterion those factors which produce a
probability density function that is accurate to five figures (99,999 per cent). We feel that this
is adequate for all normal usage.

Abramowitz and Stegun (Section 25.4) give around three dozen different methods of
numerical integration and their associated precisions. We experimented with five of these and
found little difference between the final accuracies achieved. Finally we settled for the
extended Simpson's Rule, which satisfied our operating criterion.

The selection of an approximation interval is, of course, tied into the integration method
chosen. We found that an interval of 0.010 was sufficient for » > 5. Some loss of precision
was experienced for n =4 (99,98 per cent) and more for n = 3 (99,64 per cent). However, we
could not obtain any improvement on this by taking smaller intervals in the integration. This
may be a reflection of the instability of the mathematics for n < 5, rather than computational
problems! It was decided that an interval of 0.010 was adequate for normal usage, 0.005
being used for further investigative purposes.

Detailed investigation revealed that the number of intervals needed — or the range of
integration — depends greatly on . The higher the value of n, the lower the range of
integration needed. We decided on a fixed range that would serve all n values. This means
that more computation is carried out than is needed for large » values. However, we feel that
the time saved by altering the range would be offset by testing for the range actually required.
The final decision was to take the value 5.0 as our approximation to infinity. At an interval of
0.010, this means 500 intervals. For an interval size of 0.005, we need 1,000 intervals.

Our main timing runs were carried out on our in-house microcomputer, an Alpha Micro 1000
machine. This system is approximately four years old, and was one of the first systems based
on the M68000 16-bit chip. We use a FORTRAN 77 (full) compiler. However, the
approaches described can be implemented in any high-level scientific language. All timings



are 'real time' not CP time — that is, the actual subjective time taken to run the calculations on
a one-user machine.

Timings need to be split into two parts. There is an 'overhead' time in calculating the
multiplicative factors at various intervals. This remains fairly constant at around 19 seconds
for odd values of n, and 24 for even values. The difference is caused by the calculation of the
T function in the overall constant (Addendum 2). Once the overhead calculations have been
carried out, single values of 4(7) can be calculated in under a second (for values in the tails),
with some points taking upwards of 5 seconds (central values for n<10).

In summary, we evaluate the probability density function of 7 using the Extended Simpson's
Rule numerical integration method. We integrate over a range 0 to 5 using an interval of
0.005 for our investigations. This gives better than 99,98 per cent for all n > 3. All of this
evaluation was carried out with ¢° = 0.7.

Evaluation of Confidence Levels

We can now evaluate (and graph) the probability density function for the 7 statistic from a
given number of samples. We can, therefore, investigate the likely difference between our
estimator (or rather, this function of it) and the actual 'true' value for the average value over
the study area.

The principle of confidence intervals is one that is very easy to express mathematically, but a
little more difficult to explain intuitively. Effectively, we wish to make a statement along the
lines 'our best estimate for the average is .... but we can only be p per cent confident that the
true value is above ....". Without going into the lengthy ramifications, this reduces in practice
to finding the value of 7 below which p per cent of the distribution lies, say 7).

Now, given a value of 7, we can work out how much of the distribution is above it by
integrating under the function 4(7) . This is purely a repetition of our previous problem After
extensive (empirical evaluation, we chose to use the simplest trapezoidal integration method:
a range of [-20, 10] to approximate the actual range of ( —infinity, +infinity) for » > 5 and [-
40, 30] for n < 5; an interval size of 0.10 over the whole range. With these choices, a
complete integration over the whole range takes 878 seconds for n =5, 549 seconds for n
=10, and 471 seconds for n = 20.

For confidence levels, we have the reverse problem: what 7' corresponds to a given area under
A(T) . Sichel gives no indication of how he solved this problem. Wainstein's approach was to
evaluate the integral of A(7) for a set of specified 7 values. He then interpolated between
these, using a parabolic curve-fitting technique. Wainstein himself says, "However, it must be
emphasised that this method is not optimal". We have implemented a method that removes
the approximations used by Wainstein and produces the ¥ factors to any desired level of
precision.

Our procedure is as follows:
(a) select the interval size and approximation to infinity,

(b) integrate over successive intervals until the next one would take us over p per cent,



(c) change to one-tenth of the current interval size, and
(d) repeat until the interval size has become smaller than the required precision.

This procedure is illustrated in Fig. 3 and is as precise as one can get with a numerical
technique. No real approximations are included in the process as we 'home in' on the correct

value for T,

It is a little difficult to give definitive computer timings for this process, since it depends on
both n and p. Table IV gives a set of timings on the Alpha Micro for some possible values of
both. These can be used as relative timings for other machines. These timings are for single
confidence levels only. A value for o° of 0.7 has been used throughout. The timings (and
costs) for producing confidence levels are significantly affected by different values of ¢”.
Some examples have been included in Table IV.

oas o T

Probability density function .4(T)
=

=27 -2,6 -25 -2,4 -235 2319
Variable T L)

Fig. 3—lllustration of the search for 5 par cent confidence level given 10 samples—iterative calcuistion of the area under p.d.f. AT}

A program can be written to order the percentage points and take advantage of the
integrations already covered. This sort of approach was used to produce Table V, which is a
complete table of y,(7) and ¥, factors for n = 10. This table requires 829 seconds to complete
on the Alpha Micro. Extra lines can be added to the table at a marginal extra time of around 1

second per line.

In that case, the timings would be affected (severely) by the choice of values for o°. If we
chose to put o° = n V/(n-1), for example, the timing for the same table is 18,929 seconds, i.e.
over 5 hours. A full set of tables such as Table V can be obtained from the author. In those

tables, V values are taken up to 3.0.

Other Advantages of Computerization

Traditionally, Sichel's # approach has been used to estimate the average value of a two- (or
three) parameter lognormal distribution and associated confidence limits. Tables, published
by Sichel and Wainstein, have eased this task by providing figures for specified numbers of



samples (n) and logarithmic sample variances (7). Where the user had values that were not
shown on the tables, linear interpolation was considered sufficient.

One of the major advantages of computerization apart from the speed and reliability of its
arithmetic (sic) -is that we obtain the correct result for any value of 7 and V. No interpolation
is needed, since the integrals are evaluated for each particular case. Table VI shows some
comparisons between linear interpolation and direct evaluation. We have chosen to compare
the 'actual' ¥ factors when n = 8 with those obtained using linear interpolation between n = 5
and n = 10. This example was inspired by the illustrative calculation in Rendu's book, which
uses 8 samples with a calculated logarithmic variance of ' =0.0445.

Table VI is for the upper 95 per cent confidence limit only, and shows the percentage
difference between the actual and the interpolated figure = 100 (actual — interpolated)/actual.
The results are rather disturbing. For Rendu's example, interpolating between columns carries
a penalty of over 3 per cent error. This seems a little disturbing. As the logarithmic variance
rises, so does the error when linear interpolation is used. At the desired 0.7 level, the error has
mounted to 24 per-cent. At V= 0.9, which is cited by Krige as the usual value, the error is
over 30 per cent. This must cast some grave doubts on the use of the tables as quoted by
Rendu, David, and others. This was one of the major factors in our decision to use a different
layout (Table V) in presenting the ¥ factors. This kind of presentation makes it very tricky to
interpolate between values for different n.

Linear interpolation is also used when V is not exactly equal to one of the values given on the
table. In Rendu's example, o° =0.0445. Checked against Table VI, interpolation between V=
0.04 and V' = 0.06 leads, at most, to a difference of 1 in the third decimal place, for all
columns in the table. This, at least, is a little more reassuring.

In short, the use of a computer to evaluate Sichel's # estimator and its associated confidence
limits results in greater speed, arithmetic accuracy and, above all, the elimination of the
approximations that are necessary when tables and graphs are used.

Pay Value and Payability Calculations

The third technique that is discussed in this paper is the method of calculating 'pay' and
'percentage payability' values once the lognormal distribution - two- or three- parameter-has
been established. In the estimation of ore reserves, it is generally acknowledged that material
below some economic cutoff or 'pay value' will not be mined or included in the declared
reserves for the mine. The two techniques discussed in the two previous sections are for the
complete distribution and for the estimation of the parameters for the 'best' lognormal
distribution. This section discusses briefly the results of applying one or more pay limits to
the distribution, and hence to the mine area.

It is perhaps worth noting that the problems of converting from a 'sample' distribution to a
block or stope distribution are not covered. It is a well-documented fact that block and stope
values tend to be less variable than those measured on relatively small samples. This will, of
course, affect the calculation of the percentage payability and the average value of the ore.
The calculation of block factors is not within the scope of this paper. However, the
procedures described here can be applied to any lognormal distribution provided values for
the three parameters can be provided: the average value of the whole distribution, the
logarithmic variance, and the additive constant (if any).



It is assumed that there are stable estimates for the parameters of the lognormal distribution,
which has been derived from the samples. This is a complete distribution including material
that will not be mined under normal circumstances. If a pay limit is applied to this model, all
the material below the pay limit will be rejected as 'unpay', and only material above the pay
limit will be added into the calculated reserve. The values of interest are the average value of
the material that will be mined, and the proportion of the deposit that lies above the pay limit.

There have been two main approaches to these calculations. In 1962, Krige produced a
graphical representation between the four quantities: pay limit/mean value, pay value/mean
value, logarithmic variance, and percentage payability. The definition of any two of these
quantities permits the direct calculation of the other two. This graph is in widespread use in
the industry and can be regarded as definitive.

Other authors (e.g. David) have preferred to give the mathematical relationship and suggest
that users calculate each result directly. In this approach, which is detailed in Addendum 3,
the user must supply the parameters of the lognormal distribution and the pay limit to obtain
the pay value and the payability. In addition to the mathematics, the user needs a table of the
cumulative normal (Gaussian) distribution function. This is generally the first table in any set
of statistical tables or textbook. To computerize this approach is the work of a moment,
requiring only a routine for the normal function. Many algorithms are available for this
function (e.g. Abramowitz and Stegun, p. 931). Algorithms such as 26.2.19 give up to seven
significant figures in precision, in a range of six standard deviations on either side of the
mean value.

One advantage of the graphical approach over the simple calculation is that the user can (say)
define the desired pay value and read off the pay limit that must be applied to reach this goal.
Similarly, the user can define payability and obtain the relevant pay limit and pay value. The
latter can be carried out by a program simply by reversing the mathematics and using an
algorithm for the inverse of the normal distribution function — such as the PPND discussed in
the first section of this paper. It is much more difficult to calculate the results starting with a
desired pay value, since the mathematics is complicated by two normal inverses. The usual
answer to this, in practice, is to calculate the results for several pay limits and 'home in' on the
desired pay value.

As far as timings are concerned, it is more efficient to use the (b) form of the mathematics
given in Addendum 3. There is a very small overhead in the calculation of the logarithmic
mean and in square-rooting the logarithmic variance. Apart from that, the timing costs should
be constant per pay limit. On the Alpha Micro, single calculations of pay limits take around
0.03 seconds each. On any IBM PC (without coprocessor) the results appear on the screen
with no perceptible pause. The entire GRL20 graph can be recreated in around 6 seconds on
the Alpha Micro excluding the physical plotting time (which will depend on the plotter used).

The Additive Constant (Again)

The first section of this paper discussed the estimation of the third parameter — the additive
constant. Krige states that the estimation of the mean value is robust with regard to the
additive constant. We confirmed this empirically with a particular set of sample values. We
also found that the lower confidence limit was stable, but that the logarithmic variance and
the upper confidence limit were not. It would seem, then, that the choice of additive constant,
within reasonable bounds, does not affect the final estimate of average value or of a lower



confidence level on this estimate. Some concern has to be shown about the effect on the
upper confidence limits but, since these are rarely used in practice, the problem is not of
paramount importance.

However, we must accept that the estimate of the logarithmic variance changes considerably
with the additive constant. As the constant rises, the logarithmic variance drops. In the
calculation of pay limit/pay value/payability, the logarithmic variance is of great importance
for there is not a single term in the calculation that does not depend on it. In the GRL20 graph
there are separate lines for different variances. Perhaps it would be valuable to give an
example of the effect of the choice of constant on the payability figures.

Table II gives the estimated average and logarithmic variance calculated according to Sichel's
t procedure on the set of data in Table I and assuming various additive constants. The,
variances change from over 1.4 with zero constant to 0.25 with a constant of 200. These
sample values were simulated from a distribution with an additive constant of 100; at that
level, the logarithmic variance is estimated at 0.426. We chose a set of pay limits between
300 and 1000 to apply to the distribution. The calculations were performed for additive
constants of 0. 50, 100, 150, and 200, and the results are shown in Tables VII and VIIIL.

The first thing shown by the tables is that the assumption of no additive constant has a much
greater effect than the assumption of an erroneous one. For example, at a pay limit of 300,
there is a discrepancy of around 330 in the pay value and 9 per cent in the payability, as
compared with the 'correct' value of 100 for the third parameter. This gap widens as the pay
limits rise. Our first conclusion must be that, if the values are three parameter lognormal,
some value must be used for the additive constant.

Closer inspection of Tables VII and VIII show that the percentage payability varies little with
the additive constant. At most, the deviation from the 'expected' value is around 3 per cent,
and this is for a low cutoff of 300. The more disturbing factor, perhaps, is that the mean value
changes significantly. Taking additive constants ranging from one-half to twice the correct
value, we find differences in the average value of 7 to 9 per cent.

It would seem, then, that the effort of finding a good estimate of the third parameter — the
additive constant will be repaid with a significant increase in the precision of the payability
calculations.

Conclusion

The aim in this paper was to illustrate the implementation of some of the traditional methods
of reserve estimation on today's microcomputers. The main advantages of this type of
computing power are the low costs both in purchase and in operating — and the ease of
accessibility to those with a minimum of computer expertise. All of the illustrative examples
and conclusions reached in this paper were produced on an in-house Alpha Micro at no extra
cost to the company. This machine runs at about the same speed as an IBM PC AT without a
coprocessor. With the coprocessor, the AT runs about 2.75 times faster (Williams et al).
Obviously, timings are faster on minicomputers such as a Vax system. However, costs tend to
rise also, since these machines are multi-user and tend to have well-developed accounting
packages. The major point in favour of using a PC, then, is the very fact that it is designed to
be 'personal' - single-user, low-cost, friendly system.



It has been shown that, for the most part, the techniques described in this paper present few
problems in being converted to a computer form. Where decisions have to be made, e.g. on
what approximations to accept, our approach has enabled us to evaluate many alternatives to
make sure that the results really are optimum. We have found that the more traditional 'table
and graph' approach can lead to some fairly major errors if not used with caution. We have
also raised some questions that, we hope, will stimulate further consideration of some of the
accepted approximations.

Finally, perhaps the author should reveal the real purpose in submitting this paper. Since the
use of computers became widespread in the mineral industry, there has been a certain amount
of pressure to take advantage of this by the use of more mathematical, more sophisticated,
more complex, more costly, and more erudite techniques for the estimation of reserves. One
has only to look at the development of Matheronian Geostatistics over the last twenty years
for ample illustration of this process. Presented as a simple objective mathematical
formulation of Krige's empirical work in the early 1960s by Matheron, it blossomed to fill
textbooks by the late 1970s (e.g. David) and has since branched into at least three opposing
schools of thought promoting their own variations of Ordinary Kriging, Simple Kriging,
Disjunctive Kriging, Multivariate Gaussian Kriging, Probability Kriging, Indicator Kriging,
and so on ad infinitum. All of these techniques, of course, are impossible without computers
and very difficult without the appropriate software.

Although these methods are invaluable in their place, the more traditional proven methods
have been overshadowed by the welter of theory, application, and controversy surrounding
the newer techniques. It is time, perhaps, that the established methods be seen to resume their
place as valuable weapons in the armoury of modern reserve estimation.
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TABLES

TABLE I
A TEST SET OF DATA FOR THE INFLUENCE OF THE ADDITIVE CONSTANT
ON VARIOUS PARAMETERS CALCULATED DURING A SICHEL'S t ANALYSIS

10.05 50.64 124.60
183.53 185.63  279.78
299.92  308.07  422.94
542.88  573.18  584.20
75038  811.24  828.54

TABLE II
THE INFLUENCE OF THE ADDITIVE CONSTANT ON SICHEL'S t ESTIMATOR
AND OTHER PARAMETERS

Additive  Estimated  Logarithmic Lower Upper

constant average variance 95% Pt 0.95% Pt
0 500.7 1.422 300.5 1258.6
10 460.9 1.088 294.4 993.7
20 4433 0.909 292.7 882.9
30 432.8 0.790 292.1 818.8
40 426.0 0.702 292.0 776.4
50 421.1 0.633 292.1 745.7
60 417.4 0.577 292.4 722.4
70 414.6 0.531 292.6 704.0
80 412.2 0.491 292.9 689.1
90 410.4 0.456 293.2 676.7
100 408.9 0.426 293.5 666.2
110 407.6 0.400 293.8 657.3
120 406.5 0.376 294.0 649.5
130 405.5 0.355 2943 642.7
140 404.7 0.336 294.5 636.8
150 404.0 0.318 294.7 631.4
160 403.4 0.303 294.9 626.6
170 402.8 0.288 295.1 622.4
180 402.3 0.275 2953 618.5
190 401.9 0.262 295.5 614.9
200 401.5 0.251 295.6 611.7

B



TABLE III
Y FACTORS FOR SICHEL'S t ESTIMATION FOR 10 SAMPLE VALUES AT 95%

CONFIDENCE
14 °=07 o°=03 o¢°=15 o =nV/n-1)
0.01  1.081 1.075 1.090 1.070
0.10 1292 1.268 1.325 1.251
020  1.455 1.415 1.508 1.405
040  1.754 1.684 1.850 1.713
0.60  2.066 1.962 2211 2.059

0.80 2410 2.265 2.614 2.465
1.00  2.798 2.604 3.074 2.951

1.50  4.033 3.667 4.565 4.658
2.00  5.803 5.163 6.760 7.453
TABLE IV

TIMING IN SECONDS FOR SINGLE CONFIDENCE LEVELS CALCULATED FOR
VARIOUS VALUES OF n AND p

Number of  Log variance piﬁgentage

samples o’ p=2.5% p=5%  p=10%
S 0.3 61

S 0.7 93 122 137
S 1.5 138 177 1s
10 0.3 o

10 0.7 126 131 157
10 1.5 201 209 279
15 0.3 6

15 0.7 119 136 134
15 L5 211 21 239
20 0.3 o

20 0.7 128 142 145

20 L.5 240 242 242



TABLE V ¥ FACTORS FOR SICHEL'S t ESTIMATION FOR 10 SAMPLE VALUES
ASSUMING o’ = 0.7

Percentage points
V Yn(V) 1 2.5 5 10 50 90 95 97.5 99

0.01 1.0050 0.933 0.944 0.952 0962 1.001 1.059 1.081 1.104 1.135
0.02 1.0100 0907 0.921 0.933 0.947 1.002 1.085 1.117 1.151 1.197
0.04 1.0202 0.871 0.890 0.907 0.926 1.003 1.123 1.172 1.222 1.292
0.06 1.0304 0.844 0.868 0.887 0910 1.005 1.154 1.216 1.280 1.371

0.08 1.0407 0.822 0.849 0.871 0.897 1.006 1.182 1.256 1.333 1.444
0.10 1.0510 0.803 0.832 0.856 0.885 1.007 1.208 1.292 1.382 1.511

0.12 1.0615 0.786 0.817 0.844 0.875 1.009 1.231 1.327 1.428 1.577
0.14 1.0720 0.771 0.804 0.832 0.866 1.010 1.254 1.360 1.473 1.64

0.16 1.0826 0.756 0.792 0.821 0.857 1.012 1.276 1.392 1.517 1.702
0.18 1.0934 0.743 0.780 0.811 0.849 1.013 1.298 1.424 1.560 1.764
0.20 1.1042 0.731 0.769 0.802 0.841 1.015 1.319 1.455 1.603 1.825
0.30 1.1595 0.678 0.723 0.762 0.809 1.022 1.420 1.605 1.812  2.132
0.40 1.2171 0.635 0.685 0.728 0.781 1.030 1.518 1.754 2.025 2.453
0.50 1.2770 0.598 0.652 0.699 0.758 1.039 1.617 1.907 2246  2.796
0.60 1.3394 0.565 0.623 0.674 0.737 1.049 1.718 2.066 2.480  3.168
0.70 1.4044 0.537 0.597 0.651 0.718 1.059 1.823 2.234 2.731 3.574
0.80 1.4719 0.510 0.573 0.630 0.701 1.070 1.932 2.410 3.000 4.021
0.90 1.5420 0486 0.551 0.610 0.685 1.081 2.047 2.598 3.290 4514
1.00 1.6150 0.464 0.531 0.592 0.671 1.093 2.167 2.798 3.604  5.058
1.10 1.6908 0.444 0.512 0.575 0.657 1.106 2.294 3.012 3.945 5.662
1.20 1.7695 0.425 0.495 0.560 0.644 1.120 2.427 3.241 4315 6.331

1.30 1.8515 0.408 0.478 0.545 0.633 1.134 2.569 3.486 4.717 7.073
1.40 19365 0.391 0.463 0.531 0.621 1.149 2.718 3.750 5.155 7.898
1.50 2.0248 0.376 0.449 0.518 0.611 1.165 2.877 4.033 5.633 8.815
1.60 2.1164 0.362 0.435 0.506 0.601 1.182 3.045 4337 6.154 9.834
1.70 22116 0.348 0.423 0.495 0592 1.200 3.224 4.664 6.722 10.968
1.80 2.3194 0.336 0.411 0.484 0.584 1.218 3.413 5.016 7.341 12.231
1.90 2.4128 0.324 0.399 0474 0576 1.238 3.615 5.395 8.018 13.636
2.00 2.5192 0.313 0.389 0464 0.568 1.258 3.829 5.803 8.758 15.200



TABLE VI
¥ FACTORS FOR SICHEL'S t ESTIMATION FOR UPPER 95% CONFIDENCE
ASSUMING ¢’ = 0,7

n=8 Difference

A% n=5 n=10 n=8 Interpolated %

0.01 1.165 1.081 1.099 1.115 1.43

0.02 1.243 1.117 1.144 1.167 2.08

0.04 1.364 1.172 1.211 1.248 3.07

0.0445 1.388 1.182 1.225 1.265 3.26

0.06 1.467 1.216 1.267 1.316 3.89

0.10 1.653 1.292 1.364 1.437 5.32

0.20 2.088 1.455 1.575 1.708 8.46

0.50 3.568 1.907 2.189 2.571 17.48

1.00 7.618 2.798 3.491 4.726 35.40

1.50 15.601 4.033 5.446 8.660 59.03

2.00 31.473 5.803 8.472 16.071 89.69

3.00 124.149 12.142 20.641 56.945 175.88

TABLE VII
COMPARISON OF PAY VALUES WHEN DIFFERENT ADDITIVE CONSTANTS
ARE ASSUMED
Additive constant

Pay limit 0 50 90 100 110 150 200
300 978 699 652 645 639 619 605
400 1148 818 759 749 741 716 697
500 1316 938 869 858 848 818 794
600 1480 1059 981 968 957 922 894
700 1642 1181 1094 1079 1067 1028 996
800 1802 1303 1207 1192 1178 1135 1100
900 1961 1425 1322 1304 1290 1243 1204

1000 2118 1547 1436 1417 1401 1351 1310



TABLE VIII
COMPARISON OF PAYABILITY VALUES WHEN DIFFERENT ADDITIVE
CONSTANTS ARE ASSUMED

Additive constant
Pay limit 0 50 90 100 110 150 200

300 43 49 51 52 52 53 55
400 34 37 38 38 38 39 40
500 28 28 28 28 28 29 29
600 23 21 21 21 21 21 21
700 19 16 16 15 15 15 15
800 16 13 12 11 11 11 10
900 14 10 9 9 8 8 7

1000 11 8 7 7 6 6 5

ADDENDA



Addendum 1: The Method of Non-linear Least Squares

Observations are available on n independently observed
sample points for two variables ¥ and x. A model is
postulated in which y is thought Lo be a function of x,
modified by a purely random ‘error component’. That is,

yl. - ﬂx|;a:. + f|

where ' = [8,, 8., 8., ..., 48] is a vector of k unknown
paramelers (o be ¢stimated, and ¢, is the random com-
ponent of y, i=12,3 ..., n. The function Fx;0) is a
non-linear function of #, which cannot be linearized.

To estimate & by the method of least sguares, the
criterion

$=Z @ = 2 - Agor

must be minimized with respect to each of the 6. In
linear least squares, this process results in a set of
simultaneous equations that can be solved directly for the
optimum result. In the non-linear case, an iterative or ap-
proximation method must be adopted.

If a close approximation can be made to 0, say a.
then the Gauss-Newton iterative method can be applied
(ef. Draper and Smith, 1967). By a Taylor series approx-
imation, the problem reduces to a set of equations:

DA = g
where
aFx;0, ) ;
= Eit:—'mnﬂx;ﬂ,n 1 O e
and D is a k-by-k matrix defined as
g = LOPX6Yy  RGH) o230,k
m =T a8, 6, Pl 8 K

The solution of this set of equations results in a vec-
tor, A, which can be used to gensrate a new approxima-
tion to #;

B =8, + AB

This procedure is repeated until no further improve-
ment can be made in the sum of squares. If the original
f, is not close enough to the optimal #, the procedure
may result in a local (rather than a global) minimum.

For the three-parameter lognormal, defining:

#, = p = average of logarithmic values
#, = ¢ = standard deviation of logarithms
8, = § = additive constant,

the probability density function is

W g _ (@48 —
A iz olt+ A mp[ 2¢ }

For the present purposes, Fx;f) is defined as

Fxd = [* A dr,
and the parli:l derivatives of Flx;0) have to be found, ie,

k) 8z}
dpe e
O _ 2 8z)
da i

) olz)
a8 olx+ @)’

where &(z) is the probability density function for the stan-
dard normal (Gaussian) distribution, and z = (In{x+§)
~ u)e. . . .

The following constraints are imposed in practice: the
additive constant () may not become negative, and the
standard deviation (g) may not become negative. Other-
wise, the solution is not constrained. The average sam-
ple value is found by the usual back-transformation:

= explu + 050) - 8

The logarithmic variance—more commonly quoted
than the standard deviation—is, of course, o°. The ad-
ditive constant is in the same units as the original sample
values and the estimated average value, .



Addendum 2: The Method of Maximum Likelihood

The notation is as follows:

x represents the original sample value

¥ = In x is normal (Gaussian)

n is the number of samples available

¥ = E p/n is the logarithmic mean

¥V = (- f"/n is the logarithmic sample variance.

Sichel's t estimator for the two-parameter lognormal
is defined as

t = exp (7)) v(V),

where

is? {n=1 ¥
L T%‘I 2, (n-1)n+1).. . (n+2r=3)
The recurrence relationship s used computationally:
_  ta=1) F
YT rmtar-3)

For the calculation of confidence limits, a new variable
is defined:
Int—Ink % @, (V)

8, (" 2
where A is the “true’ average of the population (the
parameter that is being estimated!) and

v ¥
Wit '“T«(,T:r)

=

It can be shown that a confidence level of p on h can
be found by

t § A Vin),
where
Y. (Vin) = exp 0,58 (V) - T, 8 (V).
The probability density function of T can be defined as
AN = € [* alw) expl{fIBWT + dw))* + wi] dw,
where ;

biw) = 3(w)

alw) = blw) w7

diw) = 0,5 ¢ — Iny,(w) — 0,5 b{w)
f=-

1 T R
Jr 050m-1)) \2¢)

It should be noted that, while h disappears from the cal-
culation, ¢ is still an important part of the final com-
putation.

T, is defined as that value of T below which the pro-
portion p of the distribution lies:

TP
p= | ADdJT.

Mote: This approach can be modified for the three-para-
meter lognormal by subtraction of the additive constant
from the estimator ¢ and from the associated confidence
levels after the computation is complete.



Addendum 3: Calculations of Pay Values and Payability

The notation is as follows:

X is the mean value before any selection
#_1is the mean value after applying pay limit (cutoff
value) of ¢

= In{x+p5) where § = additive constant

= Z y/n is the logarithmic mean

b PR

(]

E (=7 is the logarithmic variance.

n=1

Note: If only £ and 5 are available, then 7 =
Infg+a/ - 055
¢z} is the proportion of a standard normal distribu-
tion below valoe z
(a) As expressed in graphical relationship GRL20,
the pay limit/mean value is denoted as u =
(e+ B (x+5)
and the pay value/mean value as w =
(X + B8V (E+5)
These are the two axes of GRL20. Then:
Inu + 05 ¢
5

L =

_lnu-058

- 5

1 - #z) Q=1- %z

= /P and% = wi(x+p8) - 8
Percentage payability = 100 P

{b) As more usually expressed elsewhere

=
11

212[niu;'+,|:i]||—;,‘.'
5
z:ZZ|_-S
P=1-%z) Q@=1- dz)

giving % = Q(F+P)/P - §
Percentage payability = 100 P



