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ABSTRACT 
 
   Most statistical and geostatistical methods of resource and reserve estimation work extremely well 
for Normal (Gaussian) well-behaved information. However, most interesting mineral deposits exhibit 
far from this idealistic distribution of values. It seems that the more valuable the mineral, the less likely 
the data are to have a Normal distribution. Values tend to be "positively skewed" with a long tail into 
the high values. Using averaging techniques, such as inverse distance or ordinary kriging may result in 
considerable overestimation of grades and tonnages unless such values are cut or otherwise modified. 
 
   This paper presents some real case studies where distributions are (a) highly skewed and (b) the 
product of multiple phases of mineralisation. Practical methods are presented for solving such 
problems  including combinations of indicator and lognormal kriging methods. The emphasis of the 
presentation is on developing operational methods which can be used on project evaluation or grade 
control in producing mines. 
 
 

INTRODUCTION 
 
   In the last twenty years of practical reserve and resource estimation several obvious trends have been 
observed: 
 
Computers 
 
Ø The increase of availability of computing power  particularly of personal computers and 

workstations  has encouraged the computerisation of the large majority of mining ventures 
world-wide. It is common now for geological information to be computerised as exploration 
proceeds although, in many parts of the world, long established producing mines are still going 
through the mild trauma of upgrading sampling and surveying data to computers. 

 
Ø The availability of computers and of specialised software has encouraged the use of more complex 

methods of resource estimation. Of these, perhaps the most spectacular rise has been that of the 
geostatistical methods. The potential of geostatistical methods to produce the 'optimal' estimator 
and to provide confidence levels on those estimations is a powerful motive to change from simpler, 
less objective approaches. 

 
Economics 
 
Mineral deposits being discovered and brought into production have become more marginal 
economically in recent years. In addition, more pressure is being brought to bear by potential investors 
 whether banks, parent companies or individuals  to quantify the confidence in or reliability of 
stated reserves. Committees have been set up in many countries to specify acceptable definitions for 
"proven" or "measured" resources and reserves. 
 
   As economic cutoffs rise in parallel with mining costs and accessibility, the "shape" of the mineral 
distribution becomes more important. Rising cutoffs have far more impact on skewed distributions than 
on comparatively ''Normal' ones. The further into the 'tail' of the values, the more biassed most resource 
estimation methods become. Weighted average type estimators such as inverse distance and kriging are 
unbiassed over the whole deposit, but conditionally biassed once cutoffs are applied. These estimators 
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are also biassed for skewed distributions  the more skewed, the more biassed.  Questions arise as to 
whether high values should be cut to provide more "conservative" estimates or whether more 
sophisticated techniques need to be applied. 
 
Geology 
 
   As the richer and more obvious deposits are worked out, exploration produces more marginal and 
more geologically complex deposits for consideration. Geological controls such as faulting, folding and 
intrusions can now be modelled by computer and taken into account automatically when allocating 
values to potential mining blocks. 
 
   Less easy to control or, sometimes, identify are problems associated with mixtures of mineralisations. 
Mineral types can often be logged with host rock type when examining core. Obvious differences such 
as oxidation zones can be separated out as distinct geological units. Mineralisation phases, such as 
reworking or remobilisation, can often be identified by associated minerals or other visual 
characteristics. However, there are cases where complex deposition either cannot be visually assessed 
in the samples or is not identified when logging the core. 
 
   If any combination of these factors is ignored in the reserve valuation process, erroneous results can 
be obtained. No matter how sophisticated your software or how complex your geostatistical evaluation 
methods, ignoring the true complexity of the geology will produce the wrong answers.  
 
   This paper discusses how some of these factors may be included in resource and reserve estimation 
without the need to resort to highly complex mathematical processes and/or vastly increased amounts 
of data analysis. All of the cases presented in this paper are real projects or producing mines. Some of 
them are new projects and some are well-established mining ventures.  
 
 
 
 
 

CASE STUDY 
 

   For simplicity we will use a small set of data to illustrate what can go wrong if complexities are not 
identified. The scale of the sample measurements is, in this context, arbitrary and fairly irrelevant to the 
issues under discussion.  A post plot of the sample data, shaded by value is shown below. The samples 
average 275 units with a calculated standard deviation of 841.  
 

 
Figure 1. Post plot of sample values and lease area 
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   To get a rough idea of how the values vary, we can produce an inverse distance map for the lease 
area. It is obvious, from inspection, that values are more continuous 'along' the area than 'across' it. The 
search radius along the main axis of sampling was taken as twice that across the area. Radii were 
chosen to give approximately 16-20 samples for each estimation. An inverse distance squared 
technique was selected as this closely approximates ordinary kriging if the search ellipse is chosen 
correctly. 
 

 
Figure 2. Inverse distance map from sample values 

  
 

   Figure 2 shows the map obtained from inverse distance estimation. It is fairly obvious that the few 
very high values have smeared themselves out along the search ellipse, giving the impression of a 
cohesive 'payable' central area. The estimated points average 282 units with a standard deviation of 
288. An average of 24 samples was used in estimating each grid point. 
 
   Apart from some obvious smoothing, there doesn't seem to be much problem with 'bias'. Now, let us 
apply an arbitrary cutoff of 100 units. Of around 150 samples, just under 30% of the samples lie above 
100 units. These average over 900 units with a standard deviation of 1400. Of the estimated points, just 
over 55% have values over 100 units. These have a average of 475 units with a standard deviation of 
255. 
 
 
   The first question that comes to mind is, "have we chosen the correct search radius?". The simplest 
way to answer this question is to construct semi-variogram graphs. A semi-variogram is a graph of the 
'relationship' between sample values versus the distance between them. If an 'inverse distance' type of 
relationship exists, this graph should tell us what it looks like.  
 
   The different symbols indicate the direction in which the graph was constructed. Since we are fairly 
sure there should be a difference with direction, we take pairs of samples in each direction and find out 
how different they are. According to this graph there is no pattern no matter what direction we look in. 
This suggests (in the absence of any other factors) that there is no relationship with distance and that, 
therefore, we should not be using a distance weighting technique at all. This conclusion does not seem 
sensible when we can see from the post plot that there is a distinct pattern in the sample values which 
should be reflected by this graph. 
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Figure 3. Semi-variograms calculated on sample values 

 
 

STATISTICAL  ANALYSIS 
 
   Since there is visual continuity in the sample values but none in the semi-variogram graph, it would 
seem that we have done something wrong with our analysis. The semi-variogram graph is calculated by 
finding pairs of samples a specified distance apart and in a specified direction. The difference in value 
is calculate for each pair. This is squared and averaged. For a semi-variogram one-half of this 'variance' 
is plotted against the distance between the samples.  This works extremely well for Normal (Gaussian) 
type data where the variance of values is a sensible measure of variation. It does not work too well with 
skewed data. The graph below shows the histogram of the sample data values. 
 

 
Figure 4. Histogram of sample values 

 
 
   This is highly skewed, as was indicated by the fact that the standard deviation is three times the mean 
value. Superimposing a lognormal distribution on this histogram gives an acceptable fit. This suggests 
that if we take logarithms of the values, we will have a Normal distribution. This should solve the 
problem of getting a valid semi-variogram graph. The graph in Figure 5 was calculated on the 
logarithm of the sample values. The same directions were used as before.  
   To be able to use kriging, we fit models to each. 
  
   If we accept the lognormal method, we have two options according to generally accepted practice. 
We could use  the full lognormal kriging (and assume that the samples are actually lognormal) or we 
can use the "lognormal shortcut". In the latter case, we use the logarithmic semi-variogram models but 
we krige using the actual untransformed sample values. The two maps below show the difference 
between accepting the lognormal model and trying the shortcut approximation. 
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Figure 5. Semi-variograms calculated and modelled on logarithm of sample value 

 

 
Figure 6: Kriging with raw sample values and logarithmic semi-variogram model 

 

 
Figure 7. Full lognormal kriging with backtransformation  
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   The lognormal shortcut produces a grid which averages 196 units with standard deviation 493. The 
full lognormal kriging averages 157 with a standard deviation of 379. Neither of these is anywhere near 
the characteristics of the original sample data. Applying a cutoff of 100 units gives 30% payable at an 
average of 618 for lognormal shortcut and 27% payable at an average of 518 units for the full 
lognormal approach.  
 
   Whilst these two maps are giving something closer to what we expect from the sample data, neither 
of them are very satisfactory in terms of recoverable grades. The lognormal shortcut shows instability 
 check out that strange high value area in the south-west. The lognormal approach is giving a 
sensible map in that it reflects the original visual assessment of the data. However, the ''recoverable 
reserves ' are disappointing. 
 
   We do not expect to obtain the average and standard deviation witnessed in the original sample 
values, but it would certainly be reassuring to get something close enough to give us confidence that 
our geostatistical model is actually representing the geology of the deposit. 
 
 

MORE COMPLEX APPROACHES 
 

   Going back to a visual assessment of the sample data, it would appear that there is a central area 
which is 'payable' surrounded on all sides by unpay ground. None of the approaches described above 
incorporate that image in any way. It would seem sensible to find a model which looks  like our 
concept of the deposit. 
 
   Since there is a cohesive central (generally) high grade area, this suggests that a kriging method 
including a 'drift' or trend in values might be what is needed. The simplest way to do this is to use 
'universal' kriging which adds a simple polynomial type trend to the kriging equations. 
 
   We tried that in this case and obtained the map shown in Figure 8.  
 

 
Figure 8: lognormal kriging with polynomial trend 

 
   Since fitting a trend also demands Normal type data, this is a variant on the lognormal kriging used 
above to produce Figure 7. Essentially, Figure 8 is just Figure 7 with the instruction to keep going in  a 
certain direction if there is a strong trend in the data. For example, the values fall off rapidly from the 
central high value area. This is extended by including the trend in the kriging calculation. 
 
   The points on this map average 235 units with a standard deviation of 666. Since the trend 
component makes sure that the values drop off all round the edges, this is a pretty good match to the 
data. At a cutoff of 100 units, around 26% of the area is payable at an average of 680 units. The 
standard deviation on these values is around 1050 (compare to sample values at 1400).  
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Alternatives 
 
   In this case the deposit is a cohesive central core with values dropping off in all directions. This is a 
perfect case for kriging with a polynomial type trend. In other cases, the 'pay' and 'unpay' areas are too 
intermingled to be separated in this way. Another diagnostic for the need to apply a more complex 
method is simply to look at a probability plot of the data rather than a histogram. In this case, the 
probability plot shows a clear deviation from standard lognormality. We could have picked up the need 
for distinguishing the two subregions sooner if we had looked at this graph earlier. 
 

 
Figure 9. Probability plot of sample values 

 
   The 'kink' (point of inflexion) clearly visible in this plot is diagnostic of the existence of two 
geological factors in the sample values. In 25 years of inspecting such graphs, we have found that every 
such kink has had a recognisable geological reason. In this simple illustration, the mixture is simply 
pay/unpay. In fact, the kink occurs at a relative value of 45, not 100. This implies that the geological 
discrimination takes place at 45 units rather than the economic cutoff of 100 units.  
 
   It is always better to model the geology of a deposit and leave economics until the last stage of 
evaluation. 
 
Base Metal example 
 
   In other cases, the delineation between two (or three) mineralisations is not so clear. In a recent base 
metal project in Namibia, three hydrothermal events were present throughout the deposit. Taking 
volumes as small as 200 by 200 by 20 metres did not produce simplified histograms. At all scales, three 
components were recognisable. The histogram of values is shown in Figure 10 below.  
 

 
Figure 10. Histogram of logarithms of sample values 
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   The three phases could not be identified in the borehole cores and could not be  delineated in the 
computer geological model. Trends in values did not produce acceptable models. In this case it was 
necessary to combine different methods of kriging in order to produce a reliable block by block reserve 
estimate for mine planning purposes.  
 
   It proved impossible, by statistical methods, to separate the upper two components of the distribution. 
An indicator kriging was used for each block to identify how much of the block was likely to be in the 
low grade 'background' component. The remainder was assumed to be composed of payable med ium 
and  high grade material. The grade for this material was evaluated using a lognormal kriging 
approach.  
 
   In this way, a practical and reliable reserve estimation method was produced by combining two 
established techniques    one indicator kriging and one lognormal kriging run. Validations were run 
and visual comparison with borehole sections carried out to verify the results. 
 
 
Precious metal example 
 
   Gold and platinum deposits are often composed of multiple phases of mineralisation, of massive 
reworking and remobilisation, or of major oxidation zones. In many cases, combinations of indicator 
and lognormal methods can be effective in improving resource estimation and obtaining more realistic 
figures. 
 
   There are some case, though, which can be handled with a simpler approach. The probability plot in 
Figure 11 looks like an ideal straight line fit. The values plotted in this figure are, however, the 
logarithm of the sample values after a constant value has been added to each. This model is known as 
the "three parameter lognormal" and can be used in many cases where a simple lognormal plot 
produces heavily biassed figures.  
 

 
Figure 11. Probability plot of gold values using a three parameter lognormal model.  
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SUMMARY 
 

   The intent of this paper is to try to illustrate the improvement in resource and reserve estimation 
which can be achieved by reasonably simple geostatistical methods combined with a thorough 
understanding of the geological structure of the deposit under valuation. 
 
   All too often the failure to adequately value a project or control grades within a producing mine is 
blamed on the computer software or techniques being applied. It is in the selection of the appropriate 
technique that the expertise of a good ore reserve analyst lies. Good resource estimation is a synthesis 
of geological knowledge, computer expertise and statistical techniques. It is, in short, only achievable 
by a team effort. 
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